你好,我有看到你发布的博客[可解释机器学习]Task07:LIME、shap代码实战。我也在做LIME的实战练习,但一直有问题,网上针对这部分的解释也很少。因为还在研0,所以想来问问你我有疑问的地方。
img = cv2.imread(os.path.join(os.getcwd(),"miccai/4.png"))
explainer = lime_image.LimeImageExplainer()
# 将input_image转换为RGB格式
input_image_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# input_image_rgb = np.array(input_image_rgb)
predict_fn = lambda x: result.predict(x)
print(predict_fn(input_image_rgb))
explanation = explainer.explain_instance(input_image_rgb, predict_fn,top_labels=5,hide_color=0)
temp, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, hide_rest=True)
cv2.imwrite('lime_output.png', temp)
这是使用LIME的代码,predict_fn函数是我的预测函数,返回图片各个类别的得分
def predict(self, input_image):
TURN = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(TURN)
img_size = 224
data_transform = transforms.Compose(
[transforms.Resize(int(img_size * 1.14)),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
img = data_transform(image)
img = torch.unsqueeze(img, dim=0)
with torch.no_grad():
# predict class
output = torch.squeeze(self.model(img.to(self.device))).cpu()
predict = torch.softmax(output, dim=0)
predict_scores = predict.tolist()
predict_cla = torch.argmax(predict).item()
result = predict_scores
return result
一直提示我传入的预测函数的输出和LIME不兼容,请问有空帮我解答一下吗?