利用CNN模型编写含三层残差模块模型,添加一行卷积层之后报错
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torch.nn import functional as F
import matplotlib.pyplot as plt
# 设定下载参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Jupyter/dataset/mnist/',
train = True,
download = True,
transform = transform
)
test_Data = datasets.MNIST(
root = 'D:/Jupyter/dataset/mnist/',
train = False,
download = True,
transform = transform
)
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)
loss_list = []
accuracy_list = []
epoch_list = []
class ResidualBlock(nn.Module):
def __init__(self,channels):
super(ResidualBlock, self).__init__()
self.channels = channels
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x + y)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5 ,padding=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5,padding=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=5,padding=2)
self.mp = nn.MaxPool2d(kernel_size=2)
self.reblock1 = ResidualBlock(16)
self.reblock2 = ResidualBlock(32)
self.reblock3 = ResidualBlock(64)
self.fc = nn.Linear(64 * 4 * 4,10)
def forward(self, x):
in_size = x.size(0)
x = self.mp(F.relu(self.conv1(x)))
x = self.reblock1(x)
x = self.mp(F.relu(self.conv2(x)))
x = self.reblock2(x)
x = self.mp(F.relu(self.conv3(x)))
x = self.reblock3(x)
x = x.view(in_size, -1)
return self.fc(x)
model = Net()
device = torch.device('cuda')
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0
for batch_index, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_index % 200 == 199:
print('[%d, %d] loss: %.3f' % (epoch + 1, batch_index + 1, running_loss / 200))
running_loss = 0.0
loss_list.append(running_loss)
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicts = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicts == labels).sum().item()
print('Accuracy on test sets: %d%%' % (100 * correct / total))
print('Total / Correct: [', total, '/', correct, ']')
accuracy_list.append(correct / total)
for epoch in range(5):
train(epoch)
epoch_list.append(epoch)
test()
plt.plot(epoch_list, accuracy_list)
plt.grid()
plt.show()
plt.plot(epoch_list, loss_list)
plt.grid()
plt.show()
epoch_list
loss_list
报错为mat1 and mat2 shapes cannot be multiplied (64x576 and 1024x10)