请教一下大家,我yolox_voc_s.py中的self.num_classes和yolox_base.py中的self.num_classes都改成2了,但还是会警告Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([2, 128, 1, 1]).如下图黄色字部分

请教一下大家,我yolox_voc_s.py中的self.num_classes和yolox_base.py中的self.num_classes都改成2了,但还是会警告Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([2, 128, 1, 1]).如下图黄色字部分

以下回复参考:皆我百晓生、券券喵儿等免费微信小程序作答:
这个问题是由于在加载模型时,checkpoint的权重大小与模型中定义的不同导致的。为了解决这个问题,你需要确保在加载模型之前,权重的形状与定义的一致。
首先,让我们查看head.cls_preds.0.weight和head.cls_preds.0.bias在checkpoint和model中的形状是否一致。我们可以使用torch.Size()函数检查它们的维度。
在这个例子中,我们可以在checkpoints文件夹中找到checkpoint,并尝试读取它的结构。
import torch
# Load the checkpoint
checkpoint = torch.load('path/to/checkpoint')
# Check the shape of head.cls_preds.0.weight and head.cls_preds.0.bias
weight_shape_checkpoint = checkpoint['head']['cls_preds'].0.weight.shape
bias_shape_checkpoint = checkpoint['head']['cls_preds'].0.bias.shape
print(f"Weight shape in checkpoint: {weight_shape_checkpoint}")
print(f"Bias shape in checkpoint: {bias_shape_checkpoint}")
# Now let's compare it with the model
weight_shape_model = model.head.cls_preds.0.weight.shape
bias_shape_model = model.head.cls_preds.0.bias.shape
print(f"Weight shape in model: {weight_shape_model}")
print(f"Bias shape in model: {bias_shape_model}")
如果你发现两者不一致,那么可能是你在加载模型时遇到了问题。例如,可能是在将模型从一个版本加载到另一个版本时发生了错误。在这种情况下,你应该重新创建一个新的模型实例并将其加载到新的位置。这通常涉及更新model变量。
# Create a new model instance
new_model = YoloModel()
# Load the new model
new_model.load_state_dict(checkpoint['state_dict'])
# Update the model with the new weights
new_model.head.cls_preds.0.weight.data.copy_(checkpoint['head']['cls_preds'].0.weight)
new_model.head.cls_preds.0.bias.data.copy_(checkpoint['head']['cls_preds'].0.bias)
# Now you should be able to use your new model
注意:这个代码片段假设你有一个名为YoloModel的类,并且它具有一个head属性,其中包含一个cls_preds子模块。此外,load_state_dict方法用于从预训练模型加载权重。
如果你有更具体的问题或需要进一步的帮助,请提供更多的上下文信息。