yolo3 darknet.py问题 40C

我用darknetAB https://github.com/AlexeyAB/darknet 编译gpu版本后生成darknet.py文件 然后我也编译了yolo_cpp_dll.sln文件 生成dll文件 然后运行darknet.py文件 不显示图片 异常退出 图片说明

百度了这个问题 有人说要换python3.5版本 我也尝试了 但是也是不行 不会显示图片。请问各位大佬到底怎么解决??急!!!谢谢!!!

#!python3
"""
Python 3 wrapper for identifying objects in images

Requires DLL compilation

Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll".

On a GPU system, you can force CPU evaluation by any of:

- Set global variable DARKNET_FORCE_CPU to True
- Set environment variable CUDA_VISIBLE_DEVICES to -1
- Set environment variable "FORCE_CPU" to "true"


To use, either run performDetect() after import, or modify the end of this file.

See the docstring of performDetect() for parameters.

Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`)


Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py
Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py

@author: Philip Kahn
@date: 20180503
"""
#pylint: disable=R, W0401, W0614, W0703
from ctypes import *
import math
import random
import os

def sample(probs):
    s = sum(probs)
    probs = [a/s for a in probs]
    r = random.uniform(0, 1)
    for i in range(len(probs)):
        r = r - probs[i]
        if r <= 0:
            return i
    return len(probs)-1

def c_array(ctype, values):
    arr = (ctype*len(values))()
    arr[:] = values
    return arr

class BOX(Structure):
    _fields_ = [("x", c_float),
                ("y", c_float),
                ("w", c_float),
                ("h", c_float)]

class DETECTION(Structure):
    _fields_ = [("bbox", BOX),
                ("classes", c_int),
                ("prob", POINTER(c_float)),
                ("mask", POINTER(c_float)),
                ("objectness", c_float),
                ("sort_class", c_int)]


class IMAGE(Structure):
    _fields_ = [("w", c_int),
                ("h", c_int),
                ("c", c_int),
                ("data", POINTER(c_float))]

class METADATA(Structure):
    _fields_ = [("classes", c_int),
                ("names", POINTER(c_char_p))]



#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
#lib = CDLL("libdarknet.so", RTLD_GLOBAL)
hasGPU = True
if os.name == "nt":
    cwd = os.path.dirname(__file__)
    os.environ['PATH'] = cwd + ';' + os.environ['PATH']
    winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll")
    winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll")
    envKeys = list()
    for k, v in os.environ.items():
        envKeys.append(k)
    try:
        try:
            tmp = os.environ["FORCE_CPU"].lower()
            if tmp in ["1", "true", "yes", "on"]:
                raise ValueError("ForceCPU")
            else:
                print("Flag value '"+tmp+"' not forcing CPU mode")
        except KeyError:
            # We never set the flag
            if 'CUDA_VISIBLE_DEVICES' in envKeys:
                if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0:
                    raise ValueError("ForceCPU")
            try:
                global DARKNET_FORCE_CPU
                if DARKNET_FORCE_CPU:
                    raise ValueError("ForceCPU")
            except NameError:
                pass
            # print(os.environ.keys())
            # print("FORCE_CPU flag undefined, proceeding with GPU")
        if not os.path.exists(winGPUdll):
            raise ValueError("NoDLL")
        lib = CDLL(winGPUdll, RTLD_GLOBAL)
    except (KeyError, ValueError):
        hasGPU = False
        if os.path.exists(winNoGPUdll):
            lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
            print("Notice: CPU-only mode")
        else:
            # Try the other way, in case no_gpu was
            # compile but not renamed
            lib = CDLL(winGPUdll, RTLD_GLOBAL)
            print("Environment variables indicated a CPU run, but we didn't find `"+winNoGPUdll+"`. Trying a GPU run anyway.")
else:
    lib = CDLL("./libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int

copy_image_from_bytes = lib.copy_image_from_bytes
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]

def network_width(net):
    return lib.network_width(net)

def network_height(net):
    return lib.network_height(net)

predict = lib.network_predict_ptr
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)

if hasGPU:
    set_gpu = lib.cuda_set_device
    set_gpu.argtypes = [c_int]

make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE

get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
get_network_boxes.restype = POINTER(DETECTION)

make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)

free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]

free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]

network_predict = lib.network_predict_ptr
network_predict.argtypes = [c_void_p, POINTER(c_float)]

reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]

load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p

load_net_custom = lib.load_network_custom
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
load_net_custom.restype = c_void_p

do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

free_image = lib.free_image
free_image.argtypes = [IMAGE]

letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE

load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA

load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE

rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]

predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)

predict_image_letterbox = lib.network_predict_image_letterbox
predict_image_letterbox.argtypes = [c_void_p, IMAGE]
predict_image_letterbox.restype = POINTER(c_float)

def array_to_image(arr):
    import numpy as np
    # need to return old values to avoid python freeing memory
    arr = arr.transpose(2,0,1)
    c = arr.shape[0]
    h = arr.shape[1]
    w = arr.shape[2]
    arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
    data = arr.ctypes.data_as(POINTER(c_float))
    im = IMAGE(w,h,c,data)
    return im, arr

def classify(net, meta, im):
    out = predict_image(net, im)
    res = []
    for i in range(meta.classes):
        if altNames is None:
            nameTag = meta.names[i]
        else:
            nameTag = altNames[i]
        res.append((nameTag, out[i]))
    res = sorted(res, key=lambda x: -x[1])
    return res

def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
    """
    Performs the meat of the detection
    """
    #pylint: disable= C0321
    im = load_image(image, 0, 0)
    if debug: print("Loaded image")
    ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug)
    free_image(im)
    if debug: print("freed image")
    return ret

def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
    #import cv2
    #custom_image_bgr = cv2.imread(image) # use: detect(,,imagePath,)
    #custom_image = cv2.cvtColor(custom_image_bgr, cv2.COLOR_BGR2RGB)
    #custom_image = cv2.resize(custom_image,(lib.network_width(net), lib.network_height(net)), interpolation = cv2.INTER_LINEAR)
    #import scipy.misc
    #custom_image = scipy.misc.imread(image)
    #im, arr = array_to_image(custom_image)     # you should comment line below: free_image(im)
    num = c_int(0)
    if debug: print("Assigned num")
    pnum = pointer(num)
    if debug: print("Assigned pnum")
    predict_image(net, im)
    letter_box = 0
    #predict_image_letterbox(net, im)
    #letter_box = 1
    if debug: print("did prediction")
    # dets = get_network_boxes(net, custom_image_bgr.shape[1], custom_image_bgr.shape[0], thresh, hier_thresh, None, 0, pnum, letter_box) # OpenCV
    dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, letter_box)
    if debug: print("Got dets")
    num = pnum[0]
    if debug: print("got zeroth index of pnum")
    if nms:
        do_nms_sort(dets, num, meta.classes, nms)
    if debug: print("did sort")
    res = []
    if debug: print("about to range")
    for j in range(num):
        if debug: print("Ranging on "+str(j)+" of "+str(num))
        if debug: print("Classes: "+str(meta), meta.classes, meta.names)
        for i in range(meta.classes):
            if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i]))
            if dets[j].prob[i] > 0:
                b = dets[j].bbox
                if altNames is None:
                    nameTag = meta.names[i]
                else:
                    nameTag = altNames[i]
                if debug:
                    print("Got bbox", b)
                    print(nameTag)
                    print(dets[j].prob[i])
                    print((b.x, b.y, b.w, b.h))
                res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h)))
    if debug: print("did range")
    res = sorted(res, key=lambda x: -x[1])
    if debug: print("did sort")
    free_detections(dets, num)
    if debug: print("freed detections")
    return res


netMain = None
metaMain = None
altNames = None

def performDetect(imagePath="data/dog.jpg", thresh= 0.25, configPath = "./cfg/yolov3.cfg", weightPath = "yolov3.weights", metaPath= "./cfg/coco.data", showImage= True, makeImageOnly = False, initOnly= False):
    """
    Convenience function to handle the detection and returns of objects.

    Displaying bounding boxes requires libraries scikit-image and numpy

    Parameters
    ----------------
    imagePath: str
        Path to the image to evaluate. Raises ValueError if not found

    thresh: float (default= 0.25)
        The detection threshold

    configPath: str
        Path to the configuration file. Raises ValueError if not found

    weightPath: str
        Path to the weights file. Raises ValueError if not found

    metaPath: str
        Path to the data file. Raises ValueError if not found

    showImage: bool (default= True)
        Compute (and show) bounding boxes. Changes return.

    makeImageOnly: bool (default= False)
        If showImage is True, this won't actually *show* the image, but will create the array and return it.

    initOnly: bool (default= False)
        Only initialize globals. Don't actually run a prediction.

    Returns
    ----------------------


    When showImage is False, list of tuples like
        ('obj_label', confidence, (bounding_box_x_px, bounding_box_y_px, bounding_box_width_px, bounding_box_height_px))
        The X and Y coordinates are from the center of the bounding box. Subtract half the width or height to get the lower corner.

    Otherwise, a dict with
        {
            "detections": as above
            "image": a numpy array representing an image, compatible with scikit-image
            "caption": an image caption
        }
    """
    # Import the global variables. This lets us instance Darknet once, then just call performDetect() again without instancing again
    global metaMain, netMain, altNames #pylint: disable=W0603
    assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
    if not os.path.exists(configPath):
        raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`")
    if not os.path.exists(weightPath):
        raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`")
    if not os.path.exists(metaPath):
        raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`")
    if netMain is None:
        netMain = load_net_custom(configPath.encode("ascii"), weightPath.encode("ascii"), 0, 1)  # batch size = 1
    if metaMain is None:
        metaMain = load_meta(metaPath.encode("ascii"))
    if altNames is None:
        # In Python 3, the metafile default access craps out on Windows (but not Linux)
        # Read the names file and create a list to feed to detect
        try:
            with open(metaPath) as metaFH:
                metaContents = metaFH.read()
                import re
                match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE)
                if match:
                    result = match.group(1)
                else:
                    result = None
                try:
                    if os.path.exists(result):
                        with open(result) as namesFH:
                            namesList = namesFH.read().strip().split("\n")
                            altNames = [x.strip() for x in namesList]
                except TypeError:
                    pass
        except Exception:
            pass
    if initOnly:
        print("Initialized detector")
        return None
    if not os.path.exists(imagePath):
        raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`")
    # Do the detection
    #detections = detect(netMain, metaMain, imagePath, thresh)  # if is used cv2.imread(image)
    detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh)
    if showImage:
        try:
            from skimage import io, draw
            import numpy as np
            image = io.imread(imagePath)
            print("*** "+str(len(detections))+" Results, color coded by confidence ***")
            imcaption = []
            for detection in detections:
                label = detection[0]
                confidence = detection[1]
                pstring = label+": "+str(np.rint(100 * confidence))+"%"
                imcaption.append(pstring)
                print(pstring)
                bounds = detection[2]
                shape = image.shape
                # x = shape[1]
                # xExtent = int(x * bounds[2] / 100)
                # y = shape[0]
                # yExtent = int(y * bounds[3] / 100)
                yExtent = int(bounds[3])
                xEntent = int(bounds[2])
                # Coordinates are around the center
                xCoord = int(bounds[0] - bounds[2]/2)
                yCoord = int(bounds[1] - bounds[3]/2)
                boundingBox = [
                    [xCoord, yCoord],
                    [xCoord, yCoord + yExtent],
                    [xCoord + xEntent, yCoord + yExtent],
                    [xCoord + xEntent, yCoord]
                ]
                # Wiggle it around to make a 3px border
                rr, cc = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
                rr2, cc2 = draw.polygon_perimeter([x[1] + 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
                rr3, cc3 = draw.polygon_perimeter([x[1] - 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
                rr4, cc4 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] + 1 for x in boundingBox], shape= shape)
                rr5, cc5 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] - 1 for x in boundingBox], shape= shape)
                boxColor = (int(255 * (1 - (confidence ** 2))), int(255 * (confidence ** 2)), 0)
                draw.set_color(image, (rr, cc), boxColor, alpha= 0.8)
                draw.set_color(image, (rr2, cc2), boxColor, alpha= 0.8)
                draw.set_color(image, (rr3, cc3), boxColor, alpha= 0.8)
                draw.set_color(image, (rr4, cc4), boxColor, alpha= 0.8)
                draw.set_color(image, (rr5, cc5), boxColor, alpha= 0.8)
            if not makeImageOnly:
                io.imshow(image)
                io.show()
            detections = {
                "detections": detections,
                "image": image,
                "caption": "\n<br/>".join(imcaption)
            }
        except Exception as e:
            print("Unable to show image: "+str(e))
    return detections

if __name__ == "__main__":
    print(performDetect())

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
YOLO在python中调用设置darknet.set_gpu(1)无效
我的操作系统是macos,显卡为GT750M,已经成功安装了cuda,在终端调用yolo官网的示例代码可以实现gpu运算,但在python中按照作者封装好的darknet.py调用yolo时设置darknet.set_gpu(1)却无法使用gpu运算,仍是cpu运算。 我在/src/cuda.c中把cuda_set_device函数的gpu_index直接设置为1,仍无法使用gpu运算,我对c++了解的不是很多,希望大神可以帮我解决这个问题。
求助 win10配置yolo,运行darknet.sln,编译器报错。
win10配置yolo,运行darknet.sln,编译器报了一堆奇奇怪怪的错误 cuda 10.0 opencv 3.4.1 vs2017 ![图片说明](https://img-ask.csdn.net/upload/201812/02/1543756187_755458.jpg)
yolo3 使用convert.py报错,TypeError: buffer is too small for requested array
Traceback (most recent call last): File "convert.py", line 262, in <module> _main(parser.parse_args()) File "convert.py", line 143, in _main buffer=weights_file.read(weights_size * 4)) TypeError: buffer is too small for requested array 请大佬指导
YOLO的darknet make时出错
makefile里gpu和opencv=0。先是显示ofast无效的选项参数,后来注释掉了之后就显示darknet.h里有typedef‘network’重定义错误。很崩溃,跪求大佬
安装YOLO的darknet编译出现问题
请教一下各位,就是我在下载darknet后编译出现了make: * [obj/convolutiona_l_layer.o] Error 1 的问题 ![图片说明](https://img-ask.csdn.net/upload/201701/14/1484380384_669825.png) cuda版本7.5 gcc版本7.5 opencv版本2.4.8 ubuntu版本14.04 希望大家能帮我解决一下,谢谢!
yolo video python cv2图像转PIL fromarray报错
``` > > Traceback (most recent call last): > File "yolo_video.py", line 66, in <module> > detect() > File "yolo_video.py", line 60, in detect > detect_video(YOLO(**vars(FLAGS)), FLAGS.output) > File "/home/dwy5/wy/classface_yolo3/yolo.py", line 239, in detect_video > image = Image.fromarray(frame) > File "/root/anaconda3/lib/python3.6/site-packages/PIL/Image.py", line 2508, in fromarray > arr = obj.__array_interface__ > AttributeError: 'NoneType' object has no attribute '__array_interface__' > > ``` 经常异常终止报错 ``` vid = cv2.VideoCapture(0) ··· ··· return_value, frame = vid.read() image = Image.fromarray(frame) image = yolo.detect_image(image) ```
YOLO OSError: [WinError 126] 找不到指定的模块
由于毕设需要用到图像识别接触到了yolo,根据 https://blog.csdn.net/LutherK/article/details/80151514 博主的内容照着做,运行发现报错 F:\python\python.exe F:/VS2017/darknet-master/python/my_local_video_darknet.py Traceback (most recent call last): File "F:/VS2017/darknet-master/python/my_local_video_darknet.py", line 56, in <module> lib = CDLL("F:/VS2017/darknet-master/libdarknet.so", RTLD_GLOBAL) File "F:\python\lib\ctypes\__init__.py", line 348, in __init__ self._handle = _dlopen(self._name, mode) OSError: [WinError 126] 找不到指定的模块。 在网上找了很久也没有头绪,不知道该如何解决,还请各位帮忙,谢谢。自己的python版本是3.7,参考博主的python是2.7,不知道是不是版本差异的问题。
在Autoware 中编译yolo3节点时,发生darknet: ./src/cuda.c:36: check_error: Assertio `0' failed.
在Autoware 中编译yolo3节点时,发生darknet: ./src/cuda.c:36: check_error: Assertio `0' failed. CUDA error:unknown error
树莓派命令行中调用找不到dark flow,但打开python环境后单独运行dark flow就没问题,为什么?
python /home/pi/Desktop/mobile_detector-master/detect.py/home/pi/.virtualenvs/cv/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: compiletime version 3.4 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.5 return f(*args, **kwds) /home/pi/.virtualenvs/cv/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: builtins.type size changed, may indicate binary incompatibility. Expected 432, got 412 return f(*args, **kwds) Traceback (most recent call last): File "/home/pi/Desktop/mobile_detector-master/detect.py", line 11, in <module> from yolo_darfklow import YOLODarkflowDetector File "/home/pi/Desktop/mobile_detector-master/yolo_darfklow.py", line 1, in <module> from darkflow.net.build import TFNet **_ImportError: No module named 'darkflow'_** (cv) pi@raspberrypi:~/darknet/darkflow $ python Python 3.5.3 (default, Sep 27 2018, 17:25:39) [GCC 6.3.0 20170516] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from darkflow.net.build import TFNet /home/pi/.virtualenvs/cv/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: compiletime version 3.4 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.5 return f(*args, **kwds) /home/pi/.virtualenvs/cv/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: builtins.type size changed, may indicate binary incompat
yolo v3 怎么使用网络摄像头而不是笔记本摄像头?
大二的小白 刚接触yolo没几天,训练好自己的权重后已经能调用笔记本摄像头来识别海星 现在想使用网络摄像头来识别,用的是雄迈xm530模组 使用darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights rtsp://192.168.1.10:30554/user=admin&password=admin&channel=1&stream=0.sdp?real_stream 命令 会提示video stream stopped 希望有人帮忙 可以有偿 微信17860702880
急,跪求pycharm跑yolov3-train.py报错
![图片说明](https://img-ask.csdn.net/upload/201905/23/1558616226_449733.png) ``` import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss from yolo3.utils import get_random_data def _main(): annotation_path = 'train.txt' log_dir = 'logs/000/' classes_path = 'model_data/voc_classes.txt' anchors_path = 'model_data/yolo_anchors.txt' class_names = get_classes(classes_path) anchors = get_anchors(anchors_path) input_shape = (416,416) # multiple of 32, hw model = create_model(input_shape, anchors, len(class_names) ) train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir) def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'): model.compile(optimizer='adam', loss={ 'yolo_loss': lambda y_true, y_pred: y_pred}) logging = TensorBoard(log_dir=log_dir) checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5", monitor='val_loss', save_weights_only=True, save_best_only=True, period=1) batch_size = 8 val_split = 0.1 with open(annotation_path) as f: lines = f.readlines() np.random.shuffle(lines) num_val = int(len(lines)*val_split) num_train = len(lines) - num_val print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator ( data_generator_wrapper ( lines[:num_train] , batch_size , input_shape , anchors , num_classes ) , steps_per_epoch=max ( 1 , num_train // batch_size ) , validation_data=data_generator_wrapper ( lines[num_train:] , batch_size , input_shape , anchors , num_classes ) , validation_steps=max ( 1 , num_val // batch_size ) , epochs=10 , initial_epoch=0 , callbacks=[logging , checkpoint] ) model.save_weights(log_dir + 'trained_weights.h5') def get_classes(classes_path): with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False, weights_path='model_data/yolo_weights.h5'): K.clear_session() # get a new session h, w = input_shape image_input = Input(shape=(w, h, 3)) num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors//3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Do not freeze 3 output layers. num = (185 , len ( model_body.layers ) - 3)[freeze_body - 1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda ( yolo_loss , output_shape=(1 ,) , name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5} )(model_body.output + y_true) model = Model(inputs=[model_body.input] + y_true, outputs=model_loss) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i==0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data]+y_true, np.zeros(batch_size) def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes) if __name__ == '__main__': _main() ``` 报了一个:tensorflow.python.framework.errors_impl.InvalidArgumentError: Inputs to operation training/Adam/gradients/AddN_24 of type _MklAddN must have the same size and shape. Input 0: [2768896] != input 1: [8,26,26,512] [[Node: training/Adam/gradients/AddN_24 = _MklAddN[N=2, T=DT_FLOAT, _kernel="MklOp", _device="/job:localhost/replica:0/task:0/device:CPU:0"](training/Adam/gradients/batch_normalization_65/FusedBatchNorm_grad/FusedBatchNormGrad, training/Adam/gradients/batch_n
YOLO v3 OpenCV-3.4.1
balbal..... 下载完weight后,在终端输入: ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 我是根据网上Yolo v3教程一步一步来的,装了最新的opencv,发现如下问题: 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BFLOPs 105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BFLOPs 106 yolo Loading weights from yolov3.weights...Done! data/dog.jpg: Predicted in 0.045922 seconds. dog: 99% truck: 92% bicycle: 99% OpenCV(3.4.1) Error: Assertion failed ((flags & FIXED_TYPE) != 0) in type, file /home/kiraq/home/installation/opencv-3.4.1/modules/core/src/matrix_wrap.cpp, line 807 terminate called after throwing an instance of 'cv::Exception' what(): OpenCV(3.4.1) /home/kiraq/home/installation/opencv-3.4.1/modules/core/src/matrix_wrap.cpp:807: error: (-215) (flags & FIXED_TYPE) != 0 in function type Aborted (core dumped) 请问如何解决?
使用darknet时出现的问题
./darknet detect ./cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights ./data/eagle.jpg 在我输入这条指令测试时冒出了 layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 1 max 2 x 2 / 2 416 x 416 x 32 -> 208 x 208 x 32 2 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 3 max 2 x 2 / 2 208 x 208 x 64 -> 104 x 104 x 64 4 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 5 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 6 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 7 max 2 x 2 / 2 104 x 104 x 128 -> 52 x 52 x 128 8 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 9 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 10 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 11 max 2 x 2 / 2 52 x 52 x 256 -> 26 x 26 x 256 12 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 13 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 14 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 15 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 16 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 17 max 2 x 2 / 2 26 x 26 x 512 -> 13 x 13 x 512 18 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 19 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 20 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 21 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 22 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 23 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 24 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 25 route 16 26 conv 64 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 64 27 reorg / 2 26 x 26 x 64 -> 13 x 13 x 256 28 route 27 24 29 conv 1024 3 x 3 / 1 13 x 13 x1280 -> 13 x 13 x1024 30 conv 120 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 120 31 detection darknet: ./src/parser.c:280: parse_region: Assertion `l.outputs == params.inputs' failed. 已放弃 (核心已转储) 这样的提示 请问这个错误提示是因为什么呢? 另外我在安装完darknet之后按照csdn上的教程改参数,可是发现我的src文件夹中没有yolo.c等文件,但是example里面有,我就给拷贝到了scr中并做了修改,现在想想是不是安装失败了啊orz
tiny yolo 训练 已放弃 (核心已转储)
jerrylew@jerrylew-CW15:~/darknet$ ./darknet detector train ./cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc layer filters size input output 0 conv 16 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 16 1 max 2 x 2 / 2 416 x 416 x 16 -> 208 x 208 x 16 2 conv 32 3 x 3 / 1 208 x 208 x 16 -> 208 x 208 x 32 3 max 2 x 2 / 2 208 x 208 x 32 -> 104 x 104 x 32 4 conv 64 3 x 3 / 1 104 x 104 x 32 -> 104 x 104 x 64 5 max 2 x 2 / 2 104 x 104 x 64 -> 52 x 52 x 64 6 conv 128 3 x 3 / 1 52 x 52 x 64 -> 52 x 52 x 128 7 max 2 x 2 / 2 52 x 52 x 128 -> 26 x 26 x 128 8 conv 256 3 x 3 / 1 26 x 26 x 128 -> 26 x 26 x 256 9 max 2 x 2 / 2 26 x 26 x 256 -> 13 x 13 x 256 10 conv 512 3 x 3 / 1 13 x 13 x 256 -> 13 x 13 x 512 11 max 2 x 2 / 1 13 x 13 x 512 -> 13 x 13 x 512 12 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 13 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 14 conv 305 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 305 15 detection darknet: ./src/parser.c:281: parse_region: Assertion `l.outputs == params.inputs' failed. 已放弃 (核心已转储) 这什么情况啊 求解
yolo3编译阶段遇到的问题
![在跑yolo3代码时,make阶段遇到的](https://img-ask.csdn.net/upload/201807/11/1531297794_565983.png)
pycharm没有numpy模块
本人深度学习萌新,准备用yolov3进行车的识别,看了一个大佬的文章开始操作但是在调用numpy时报错,按照站内一些大佬指引配置了python的anaconda的环境仍然不行,而且另外开的文件用numpy就可以正常运作不报错、 ``` C:\Users\27568\Anaconda3\envs\untitled\python.exe D:/keras-yolo3-master/train.py Traceback (most recent call last): File "D:/keras-yolo3-master/train.py", line 7, in <module> import numpy as np ModuleNotFoundError: No module named 'numpy' Process finished with exit code 1 ``` 附上原代码和随意写的新代码 ``` """ Retrain the YOLO model for your own dataset. """ import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping ``` 新代码: ``` import numpy as np print("hello") ``` 并不报错
求助:在windows下测试YOLO出现问题怎么办
我测试YOLO后显示这样的:有人知道怎么回事吗 ![图片说明](https://img-ask.csdn.net/upload/201703/17/1489753118_428908.png)
windows下配置CUDA+YOLO出现的问题
我使用的是YOLO-windows https://github.com/frischzenger/yolo-windows,环境配置好后,编译出现各种问题,搜了很多还是没解决,求大神帮忙 ![图片说明](https://img-ask.csdn.net/upload/201703/16/1489647329_348395.jpg)
keras-yolo3测试数据集,报错如下是啥原因?
``` 2019-07-23 15:47:09.299165: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:502] remapper failed: Invalid argument: Subshape must have computed start >= end since stride is negative, but is 0 and 2 (computed from start 0 and end 9223372036854775807 over shape with rank 2 and stride-1) ```
相见恨晚的超实用网站
搞学习 知乎:www.zhihu.com 简答题:http://www.jiandati.com/ 网易公开课:https://open.163.com/ted/ 网易云课堂:https://study.163.com/ 中国大学MOOC:www.icourse163.org 网易云课堂:study.163.com 哔哩哔哩弹幕网:www.bilibili.com 我要自学网:www.51zxw
花了20分钟,给女朋友们写了一个web版群聊程序
参考博客 [1]https://www.byteslounge.com/tutorials/java-ee-html5-websocket-example
爬虫福利二 之 妹子图网MM批量下载
爬虫福利一:27报网MM批量下载    点击 看了本文,相信大家对爬虫一定会产生强烈的兴趣,激励自己去学习爬虫,在这里提前祝:大家学有所成! 目标网站:妹子图网 环境:Python3.x 相关第三方模块:requests、beautifulsoup4 Re:各位在测试时只需要将代码里的变量 path 指定为你当前系统要保存的路径,使用 python xxx.py 或IDE运行即可。
字节跳动视频编解码面经
引言 本文主要是记录一下面试字节跳动的经历。 三四月份投了字节跳动的实习(图形图像岗位),然后hr打电话过来问了一下会不会opengl,c++,shador,当时只会一点c++,其他两个都不会,也就直接被拒了。 七月初内推了字节跳动的提前批,因为内推没有具体的岗位,hr又打电话问要不要考虑一下图形图像岗,我说实习投过这个岗位不合适,不会opengl和shador,然后hr就说秋招更看重基础。我当时
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
Python 基础(一):入门必备知识
目录1 标识符2 关键字3 引号4 编码5 输入输出6 缩进7 多行8 注释9 数据类型10 运算符10.1 常用运算符10.2 运算符优先级 1 标识符 标识符是编程时使用的名字,用于给变量、函数、语句块等命名,Python 中标识符由字母、数字、下划线组成,不能以数字开头,区分大小写。 以下划线开头的标识符有特殊含义,单下划线开头的标识符,如:_xxx ,表示不能直接访问的类属性,需通过类提供
这30个CSS选择器,你必须熟记(上)
关注前端达人,与你共同进步CSS的魅力就是让我们前端工程师像设计师一样进行网页的设计,我们能轻而易举的改变颜色、布局、制作出漂亮的影音效果等等,我们只需要改几行代码,不需...
国产开源API网关项目进入Apache孵化器:APISIX
点击蓝色“程序猿DD”关注我回复“资源”获取独家整理的学习资料!近日,又有一个开源项目加入了这个Java开源界大名鼎鼎的Apache基金会,开始进行孵化器。项目名称:AP...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
编写Spring MVC控制器的14个技巧
本期目录 1.使用@Controller构造型 2.实现控制器接口 3.扩展AbstractController类 4.为处理程序方法指定URL映射 5.为处理程序方法指定HTTP请求方法 6.将请求参数映射到处理程序方法 7.返回模型和视图 8.将对象放入模型 9.处理程序方法中的重定向 10.处理表格提交和表格验证 11.处理文件上传 12.在控制器中自动装配业务类 ...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
求小姐姐抠图竟遭白眼?痛定思痛,我决定用 Python 自力更生!
点击蓝色“Python空间”关注我丫加个“星标”,每天一起快乐的学习大家好,我是 Rocky0429,一个刚恰完午饭,正在用刷网页浪费生命的蒟蒻...一堆堆无聊八卦信息的网页内容慢慢使我的双眼模糊,一个哈欠打出了三斤老泪,就在此时我看到了一张图片:是谁!是谁把我女朋友的照片放出来的!awsl!太好看了叭...等等,那个背景上的一堆鬼画符是什么鬼?!真是看不下去!叔叔婶婶能忍,隔壁老王的三姨妈的四表...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
致 Python 初学者
欢迎来到“Python进阶”专栏!来到这里的每一位同学,应该大致上学习了很多 Python 的基础知识,正在努力成长的过程中。在此期间,一定遇到了很多的困惑,对未来的学习方向感到迷茫。我非常理解你们所面临的处境。我从2007年开始接触 python 这门编程语言,从2009年开始单一使用 python 应对所有的开发工作,直至今天。回顾自己的学习过程,也曾经遇到过无数的困难,也曾经迷茫过、困惑过。开办这个专栏,正是为了帮助像我当年一样困惑的 Python 初学者走出困境、快速成长。希望我的经验能真正帮到你
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU...
相关热词 c# 输入ip c# 乱码 报表 c#选择结构应用基本算法 c# 收到udp包后回包 c#oracle 头文件 c# 序列化对象 自定义 c# tcp 心跳 c# ice连接服务端 c# md5 解密 c# 文字导航控件
立即提问