I have a big array of items and another array of weights of the same size. I would like to sample without replacement from the first array based on the weights from the second array. Is there a way to do this using gonum
?
加权采样,无需使用gonum进行替换
- 写回答
- 好问题 0 提建议
- 追加酬金
- 关注问题
- 邀请回答
-
1条回答 默认 最新
- dpndp64206 2018-06-14 22:54关注
Weighted
and its relative method.Take()
look exactly like what you want.From the doc:
func NewWeighted(w []float64, src *rand.Rand) Weighted
NewWeighted
returns aWeighted
for the weightsw
. Ifsrc
isnil
,rand.Rand
is used as the random source. Note that sampling from weights with a high variance or overall low absolute value sum may result in problems with numerical stability.func (s Weighted) Take() (idx int, ok bool)
Take
returns an index from the Weighted with probability proportional to the weight of the item. The weight of the item is then set to zero.Take
returnsfalse
if there are no items remaining.Therefore
Take
is indeed what you need for sampling without replacement.You can use
NewWeighted
to create aWeighted
with the given weights, then useTake
to extract one index with probability based on the previously set weights, and then select the item at the extracted index from your array of samples.
Working example:
package main import ( "fmt" "time" "golang.org/x/exp/rand" "gonum.org/v1/gonum/stat/sampleuv" ) func main() { samples := []string{"hello", "world", "what's", "going", "on?"} weights := []float64{1.0, 0.55, 1.23, 1, 0.002} w := sampleuv.NewWeighted( weights, rand.New(rand.NewSource(uint64(time.Now().UnixNano()))) ) i, _ := w.Take() fmt.Println(samples[i]) }
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报
悬赏问题
- ¥15 PointNet++的onnx模型只能使用一次
- ¥20 西南科技大学数字信号处理
- ¥15 有两个非常“自以为是”烦人的问题急期待大家解决!
- ¥30 STM32 INMP441无法读取数据
- ¥15 R语言绘制密度图,一个密度曲线内fill不同颜色如何实现
- ¥100 求汇川机器人IRCB300控制器和示教器同版本升级固件文件升级包
- ¥15 用visualstudio2022创建vue项目后无法启动
- ¥15 x趋于0时tanx-sinx极限可以拆开算吗
- ¥500 把面具戴到人脸上,请大家贡献智慧,别用大模型回答,大模型的答案没啥用
- ¥15 任意一个散点图自己下载其js脚本文件并做成独立的案例页面,不要作在线的,要离线状态。