keras model.fit_generator训练完一个epoch之后无法加载训练集怎么处理?

1、在训练神经网络的过程中遇到了训练完一个epoch之后无法继续训练的问题,具体问题截图如下

图片说明

数据生成的代码如下

def GET_DATASET_SHUFFLE(train_x, train_y, batch_size):
    #random.shuffle(X_samples)

    batch_num = int(len(train_x) / batch_size)
    max_len = batch_num * batch_size
    X_samples = np.array(train_x[0:max_len])
    Y_samples = np.array(train_y[0:max_len])

    X_batches = np.split(X_samples, batch_num)
    Y_batches = np.split(Y_samples, batch_num)

    for i in range(batch_num):
        x = np.array(list(map(load_image, X_batches[i])))
        y = np.array(list(map(load_label, Y_batches[i])))
        yield x, y 

想要向各位大神请教一下,刚刚接触这个不是太懂

1个回答

eswai
Eswai 回复目标工头的搬砖工: 求问怎么解决的?我也遇到这个问题
大约一个月之前 回复
Melon233
目标工头的搬砖工 我昨天解决了
大约 2 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
在学习人脸识别运用keras的过程中出现了问题
本人在尝试学习"http://www.cnblogs.com/neo-T/p/6477378.html" 此博客提供的人脸识别代码 遇到了以下问题,不知该怎么解决 ``` WARNING:tensorflow:Variable *= will be deprecated. Use variable.assign_mul if you want assignment to the variable value or 'x = x * y' if you want a new python Tensor object. Epoch 1/10 Traceback (most recent call last): File "E:/python/python3.64/python代码练习/人脸识别/face_train_use_keras.py", line 189, in <module> model.train(dataset) File "E:/python/python3.64/python代码练习/人脸识别/face_train_use_keras.py", line 179, in train validation_data=(dataset.valid_images, dataset.valid_labels)) File "E:\python\anaconda\anaconda\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper return func(*args, **kwargs) File "E:\python\anaconda\anaconda\lib\site-packages\keras\models.py", line 1315, in fit_generator initial_epoch=initial_epoch) File "E:\python\anaconda\anaconda\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper return func(*args, **kwargs) File "E:\python\anaconda\anaconda\lib\site-packages\keras\engine\training.py", line 2268, in fit_generator callbacks.on_epoch_end(epoch, epoch_logs) File "E:\python\anaconda\anaconda\lib\site-packages\keras\callbacks.py", line 77, in on_epoch_end callback.on_epoch_end(epoch, logs) File "E:\python\anaconda\anaconda\lib\site-packages\keras\callbacks.py", line 339, in on_epoch_end self.progbar.update(self.seen, self.log_values) AttributeError: 'ProgbarLogger' object has no attribute 'log_values' ``` 我清楚ProgbarLogger内没有log_values的属性的意思,但是因为刚开始接触,不知道应怎样改动
keras实现人脸识别,训练失败……请教大神指点迷津!!!
![图片说明](https://img-ask.csdn.net/upload/201904/26/1556209614_615215.jpg) 各位大神,如图所示,在训练过程中,第二轮开始出现问题,这是什么原因呢? 代码如下: ------------------------------------------------- ``` import random import keras import numpy as np import cv2 from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.models import load_model from keras import backend as K from source_data import load_dataset,resize_img #定义数据集格式 class Dataset: def __init__(self, path_name): #训练数据集 self.train_images = None self.train_labels = None #测试集 self.valid_images = None self.valid_labels = None #样本数据 self.test_images = None self.test_labels = None #load路径 self.path_name = path_name #维度顺序 self.input_shape = None #加载数据集并按照交叉验证的原则划分数据集,完成数据预处理 def load(self,img_rows=64, img_cols=64,img_channels = 3,nb_classes = 2): #加载数据集到内存 images,labels=load_dataset(self.path_name)#函数调用 train_images, valid_images, train_labels, valid_labels= train_test_split(images, labels, test_size = 0.3, random_state = random.randint(0, 100)) _, test_images, _, test_labels = train_test_split(images, labels, test_size = 0.5, random_state = random.randint(0, 100)) #根据backend类型确定输入图片数据时的顺序为:channels,rows,cols,否则:rows,cols,channels #这部分代码就是根据keras库要求的维度顺序重组训练数据集 train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels) valid_images = valid_images.reshape(valid_images.shape[0], img_rows, img_cols, img_channels) test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels) self.input_shape = (img_rows, img_cols, img_channels) #输出训练集、验证集、测试集的数量 print(train_images.shape[0], 'train samples') print(valid_images.shape[0], 'valid samples') print(test_images.shape[0], 'test samples') #我们的模型使用categorical_crossentropy作为损失函数,因此需要根据类别数量nb_classes将 #类别标签进行one-hot编码使其向量化,在这里我们的类别只有两种,经过转化后标签数据变为二维 train_labels = np_utils.to_categorical(train_labels, nb_classes) valid_labels = np_utils.to_categorical(valid_labels, nb_classes) test_labels = np_utils.to_categorical(test_labels, nb_classes) #像素数据浮点化以便归一化 train_images = train_images.astype('float32') valid_images = valid_images.astype('float32') test_images = test_images.astype('float32') #将其归一化,图像的各像素值归一化到0—1区间 train_images /= 255 valid_images /= 255 test_images /= 255 self.train_images = train_images self.valid_images = valid_images self.test_images = test_images self.train_labels = train_labels self.valid_labels = valid_labels self.test_labels = test_labels class Model: def __init__(self): self.model = None #建立keras模型 def build_model(self, dataset, nb_classes = 2): #构建一个空的网络模型,序贯模型或线性堆叠模型,添加各个layer self.model = Sequential() #以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层 self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape = dataset.input_shape)) #1 2维卷积层 self.model.add(Activation('relu')) #2 激活函数层 self.model.add(Convolution2D(32, 3, 3)) #3 2维卷积层 self.model.add(Activation('relu')) #4 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #5 池化层 self.model.add(Dropout(0.25)) #6 Dropout层 self.model.add(Convolution2D(64, 3, 3, border_mode='same')) #7 2维卷积层 self.model.add(Activation('relu')) #8 激活函数层 self.model.add(Convolution2D(64, 3, 3)) #9 2维卷积层 self.model.add(Activation('relu')) #10 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #11 池化层 self.model.add(Dropout(0.25)) #12 Dropout层 self.model.add(Flatten()) #13 Flatten层 self.model.add(Dense(512)) #14 Dense层,又被称作全连接层 self.model.add(Activation('relu')) #15 激活函数层 self.model.add(Dropout(0.5)) #16 Dropout层 self.model.add(Dense(nb_classes)) #17 Dense层 self.model.add(Activation('softmax')) #18 分类层,输出最终结果 #Prints a string summary of the network self.model.summary() #训练模型 def train(self, dataset, batch_size = 20, nb_epoch = 10, data_augmentation = True): sgd = SGD(lr = 0.01, decay = 1e-6, momentum = 0.9, nesterov = True) #采用随机梯度下降优化器进行训练,首先生成一个优化器对象 self.model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy']) #完成实际的模型配置 #不使用数据提升,所谓的提升就是从我们提供的训练数据中利用旋转、翻转、加噪声等方法提升训练数据规模,增加模型训练量 if not data_augmentation: self.model.fit(dataset.train_images, dataset.train_labels, batch_size = batch_size, epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels), shuffle = True) #使用实时数据提升 else: #定义数据生成器用于数据提升,其返回一个生成器对象datagen,datagen每被调用一 #次其生成一组数据(顺序生成),节省内存,其实就是python的数据生成器 datagen = ImageDataGenerator( featurewise_center = False, #是否使输入数据去中心化(均值为0), samplewise_center = False, #是否使输入数据的每个样本均值为0 featurewise_std_normalization = False, #是否数据标准化(输入数据除以数据集的标准差) samplewise_std_normalization = False, #是否将每个样本数据除以自身的标准差 zca_whitening = False, #是否对输入数据施以ZCA白化 rotation_range = 20, #数据提升时图片随机转动的角度(范围为0~180) width_shift_range = 0.2, #数据提升时图片水平偏移的幅度(单位为图片宽度的占比,0~1之间的浮点数) height_shift_range = 0.2, #同上,只不过这里是垂直 horizontal_flip = True, #是否进行随机水平翻转 vertical_flip = False) #是否进行随机垂直翻转 #计算整个训练样本集的数量以用于特征值归一化等处理 datagen.fit(dataset.train_images) #利用生成器开始训练模型—0.7*N self.model.fit_generator(datagen.flow(dataset.train_images, dataset.train_labels, batch_size = batch_size), steps_per_epoch = dataset.train_images.shape[0], epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels)) if __name__ == '__main__': dataset = Dataset('e:\saving') dataset.load()#实例操作,完成实际数据加载和预处理 model = Model() model.build_model(dataset) #训练数据 model.train(dataset) ```
Keras, Tensorflow, ValueError
把csdn上一个颜值打分程序放到jupyter notebook上跑,程序如下: ``` from keras.applications import ResNet50 from keras import optimizers from keras.layers import Dense, Dropout from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint from keras.backend.tensorflow_backend import set_session os.environ['CUDA_VISIBLE_DEVICES'] = '1' config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) batch_size = 32 target_size = (224, 224) resnet = ResNet50(include_top=False, pooling='avg') resnet.trainable = False # keras.backend.clear_session() # tf.reset_default_graph() model = Sequential() model.add(resnet) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(optimizer=optimizers.SGD(lr=0.001), loss='mse') callbacks = [EarlyStopping(monitor='val_loss', patience=5, verbose=1, min_delta=1e-4), ReduceLROnPlateau(monitor='val_loss', patience=3, factor=0.1, epsilon=1e-4), ModelCheckpoint(monitor='val_loss', filepath='weights/resnet50_weights.hdf5', save_best_only=True, save_weights_only=True)] train_file_list, test_file_list = read_data_list() train_steps_per_epoch = math.ceil(len(train_file_list) / batch_size) test_steps_per_epoch = math.ceil(len(test_file_list) / batch_size) train_data = DataGenerator(train_file_list, target_size,batch_size) test_data = DataGenerator(test_file_list, target_size, batch_size) model.fit_generator(train_data, steps_per_epoch=train_steps_per_epoch, epochs=30, verbose=1, callbacks=callbacks, validation_data=test_data, validation_steps=test_steps_per_epoch, use_multiprocessing=True) ``` 结果引发如下错误: ValueError Traceback (most recent call last) <ipython-input-34-ae0a8870fdc1> in <module>() 20 # tf.reset_default_graph() 21 model = Sequential() ---> 22 model.add(resnet) 23 model.add(Dropout(0.5)) 24 model.add(Dense(1, activation='sigmoid')) ...Ignoring many tracing lines... ValueError: Variable bn_conv1/moving_mean/biased already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at: File "xxxx\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1269, in __init__ self._traceback = _extract_stack() File "xxxx\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2506, in create_op original_op=self._default_original_op, op_def=op_def) File "xxxx\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 767, in apply_op op_def=op_def) 我按照网上说法在model语句前加了tf.reset_default_graph() ,结果又产生新的error: ValueError: Tensor("conv1_1/kernel:0", shape=(7, 7, 3, 64), dtype=float32_ref) must be from the same graph as Tensor("resnet50/conv1_pad/Pad:0", shape=(?, ?, ?, 3), dtype=float32). 又按照网上说法加了keras.backend.clear_session(),总共加的两句前前后后在很多地方放了测试,结果都会有新的问题: ValueError: Tensor("conv1/kernel:0", shape=(7, 7, 3, 64), dtype=float32_ref) must be from the same graph as Tensor("resnet50/conv1_pad/Pad:0", shape=(?, ?, ?, 3), dtype=float32). 请教大牛究竟该如何彻底解决问题。
关于 keras 中用ImageDataGenerator 做 data augmentation 的问题
各位大神好,小白刚接触深度学习和keras. 有两个问题一直困扰着我,用keras中的 ImageDataGenerator做data augmentation时, (1)每个epoch的图片都不同,这样的做,反向传播时修改的参数还准确吗,训练模型严谨吗, (2)我试着输出过训练图像,发现里面没有原始图像,这样做数据扩张感觉很慌,是不是我使用方法的问题啊,请大佬指点迷津 ``` datagen = ImageDataGenerator( rescale=None, shear_range=0.2, zoom_range=[0.95,1.05], rotation_range=10, horizontal_flip=True, vertical_flip=True, fill_mode='reflect', ) training = model.fit_generator(datagen.flow(data_train, label_train_binary, batch_size=n_batch, shuffle=True), callbacks=[checkpoint,tensorboard,csvlog],validation_data=(data_val,label_val_binary),steps_per_epoch=len(data_train)//n_batch, nb_epoch=10000, verbose=1) ```
基于keras,使用imagedatagenerator.flow函数读入数据,训练集ACC极低
在做字符识别的神经网络,数据集是用序号标好名称的图片,标签取图片的文件名。想用Imagedatagenrator 函数和flow函数,增加样本的泛化性,然后生成数据传入网络,可是这样acc=1/类别数,基本为零。请问哪里出了问题 ``` datagen = ImageDataGenerator( width_shift_range=0.1, height_shift_range=0.1 ) def read_train_image(self, name): myimg = Image.open(name).convert('RGB') return np.array(myimg) def train(self): #训练集 train_img_list = [] train_label_list = [] #测试集 test_img_list = [] test_label_list = [] for file in os.listdir('train'): files_img_in_array = self.read_train_image(name='train/' + file) train_img_list.append(files_img_in_array) # Image list add up train_label_list.append(int(file.split('_')[0])) # lable list addup for file in os.listdir('test'): files_img_in_array = self.read_train_image(name='test/' + file) test_img_list.append(files_img_in_array) # Image list add up test_label_list.append(int(file.split('_')[0])) # lable list addup train_img_list = np.array(train_img_list) train_label_list = np.array(train_label_list) test_img_list = np.array(train_img_list) test_label_list = np.array(train_label_list) train_label_list = np_utils.to_categorical(train_label_list, 5788) test_label_list = np_utils.to_categorical(test_label_list, 5788) train_img_list = train_img_list.astype('float32') test_img_list = test_img_list.astype('float32') test_img_list /= 255.0 train_img_list /= 255.0 ``` 这是图片数据的处理,图片和标签都存到list里。下面是用fit_genrator训练 ``` model.fit_generator( self.datagen.flow(x=train_img_list, y=train_label_list, batch_size=2), samples_per_epoch=len(train_img_list), epochs=10, validation_data=(test_img_list,test_label_list), ) ```
使用keras进行分类问题时,验证集loss,accuracy 显示0.0000e+00,但是最后画图像时能显示出验证曲线
data_train, data_test, label_train, label_test = train_test_split(data_all, label_all, test_size= 0.2, random_state = 1) data_train, data_val, label_train, label_val = train_test_split(data_train,label_train, test_size = 0.25) data_train = np.asarray(data_train, np.float32) data_test = np.asarray(data_test, np.float32) data_val = np.asarray(data_val, np.float32) label_train = np.asarray(label_train, np.int32) label_test = np.asarray(label_test, np.int32) label_val = np.asarray(label_val, np.int32) training = model.fit_generator(datagen.flow(data_train, label_train_binary, batch_size=200,shuffle=True), validation_data=(data_val,label_val_binary), samples_per_epoch=len(data_train)*8, nb_epoch=30, verbose=1) def plot_history(history): plt.plot(training.history['acc']) plt.plot(training.history['val_acc']) plt.title('model accuracy') plt.xlabel('epoch') plt.ylabel('accuracy') plt.legend(['acc', 'val_acc'], loc='lower right') plt.show() plt.plot(training.history['loss']) plt.plot(training.history['val_loss']) plt.title('model loss') plt.xlabel('epoch') plt.ylabel('loss') plt.legend(['loss', 'val_loss'], loc='lower right') plt.show() plot_history(training) ![图片说明](https://img-ask.csdn.net/upload/201812/10/1544423669_112599.jpg)![图片说明](https://img-ask.csdn.net/upload/201812/10/1544423681_598605.jpg)
急,跪求pycharm跑yolov3-train.py报错
![图片说明](https://img-ask.csdn.net/upload/201905/23/1558616226_449733.png) ``` import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss from yolo3.utils import get_random_data def _main(): annotation_path = 'train.txt' log_dir = 'logs/000/' classes_path = 'model_data/voc_classes.txt' anchors_path = 'model_data/yolo_anchors.txt' class_names = get_classes(classes_path) anchors = get_anchors(anchors_path) input_shape = (416,416) # multiple of 32, hw model = create_model(input_shape, anchors, len(class_names) ) train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir) def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'): model.compile(optimizer='adam', loss={ 'yolo_loss': lambda y_true, y_pred: y_pred}) logging = TensorBoard(log_dir=log_dir) checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5", monitor='val_loss', save_weights_only=True, save_best_only=True, period=1) batch_size = 8 val_split = 0.1 with open(annotation_path) as f: lines = f.readlines() np.random.shuffle(lines) num_val = int(len(lines)*val_split) num_train = len(lines) - num_val print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator ( data_generator_wrapper ( lines[:num_train] , batch_size , input_shape , anchors , num_classes ) , steps_per_epoch=max ( 1 , num_train // batch_size ) , validation_data=data_generator_wrapper ( lines[num_train:] , batch_size , input_shape , anchors , num_classes ) , validation_steps=max ( 1 , num_val // batch_size ) , epochs=10 , initial_epoch=0 , callbacks=[logging , checkpoint] ) model.save_weights(log_dir + 'trained_weights.h5') def get_classes(classes_path): with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False, weights_path='model_data/yolo_weights.h5'): K.clear_session() # get a new session h, w = input_shape image_input = Input(shape=(w, h, 3)) num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors//3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Do not freeze 3 output layers. num = (185 , len ( model_body.layers ) - 3)[freeze_body - 1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda ( yolo_loss , output_shape=(1 ,) , name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5} )(model_body.output + y_true) model = Model(inputs=[model_body.input] + y_true, outputs=model_loss) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i==0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data]+y_true, np.zeros(batch_size) def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes) if __name__ == '__main__': _main() ``` 报了一个:tensorflow.python.framework.errors_impl.InvalidArgumentError: Inputs to operation training/Adam/gradients/AddN_24 of type _MklAddN must have the same size and shape. Input 0: [2768896] != input 1: [8,26,26,512] [[Node: training/Adam/gradients/AddN_24 = _MklAddN[N=2, T=DT_FLOAT, _kernel="MklOp", _device="/job:localhost/replica:0/task:0/device:CPU:0"](training/Adam/gradients/batch_normalization_65/FusedBatchNorm_grad/FusedBatchNormGrad, training/Adam/gradients/batch_n
Segnet网络用keras实现的时候报错ValueError,求大神帮忙看看
![图片说明](https://img-ask.csdn.net/upload/201904/05/1554454470_801036.jpg) 报错为:Error when checking target: expected activation_1 to have 3 dimensions, but got array with shape (32, 10) keras+tensorflow后端 代码如下 ``` # coding=utf-8 import matplotlib from PIL import Image matplotlib.use("Agg") import matplotlib.pyplot as plt import argparse import numpy as np from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation, Flatten # from keras.utils.np_utils import to_categorical # from keras.preprocessing.image import img_to_array from keras.models import Model from keras.layers import Input from keras.callbacks import ModelCheckpoint # from sklearn.preprocessing import LabelBinarizer # from sklearn.model_selection import train_test_split # import pickle import matplotlib.pyplot as plt import os from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) path = '/tmp/2' os.chdir(path) training_set = train_datagen.flow_from_directory( 'trainset', target_size=(64,64), batch_size=32, class_mode='categorical', shuffle=True) test_set = test_datagen.flow_from_directory( 'testset', target_size=(64,64), batch_size=32, class_mode='categorical', shuffle=True) def SegNet(): model = Sequential() # encoder model.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(64, 64, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # (128,128) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # (64,64) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # (32,32) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # (16,16) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # (8,8) # decoder model.add(UpSampling2D(size=(2, 2))) # (16,16) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) # (32,32) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) # (64,64) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) # (128,128) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) # (256,256) model.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(64, 64, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(10, (1, 1), strides=(1, 1), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Reshape((64*64, 10))) # axis=1和axis=2互换位置,等同于np.swapaxes(layer,1,2) model.add(Permute((2, 1))) #model.add(Flatten()) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.summary() return model def main(): model = SegNet() filepath = "/tmp/2/weights.best.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] history = model.fit_generator( training_set, steps_per_epoch=(training_set.samples / 32), epochs=20, callbacks=callbacks_list, validation_data=test_set, validation_steps=(test_set.samples / 32)) # Plotting the Loss and Classification Accuracy model.metrics_names print(history.history.keys()) # "Accuracy" plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # "Loss" plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() if __name__ == '__main__': main() ``` 主要是这里,segnet没有全连接层,最后输出的应该是一个和输入图像同等大小的有判别标签的shape吗。。。求教怎么改。 输入图像是64 64的,3通道,总共10类,分别放在testset和trainset两个文件夹里
Mask r-cnn 无法训练的问题
在做 https://github.com/matterport/Mask_RCNN 的复现。 在复现train_shpes时,在heads层训练时,卡在了Epoch 1/1。我观察下gpu和cpu,都没有工作 我在停止代码运行时发现停在了 File "<ipython-input-2-72119e4591c8>", line 1, in <module> runfile('D:/py/Mask_RCNN-master/samples/shapes/train_shapes.py', wdir='D:/py/Mask_RCNN-master/samples/shapes') File "D:\anaconda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 705, in runfile execfile(filename, namespace) File "D:\anaconda\envs\tensorflow\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile exec(compile(f.read(), filename, 'exec'), namespace) File "D:/py/Mask_RCNN-master/samples/shapes/train_shapes.py", line 258, in <module> layers='heads') File "D:\py\Mask_RCNN-master\mrcnn\model.py", line 2352, in train use_multiprocessing=True, File "D:\anaconda\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py", line 87, in wrapper return func(*args, **kwargs) File "D:\anaconda\envs\tensorflow\lib\site-packages\keras\engine\training.py", line 2011, in fit_generator generator_output = next(output_generator) File "D:\anaconda\envs\tensorflow\lib\site-packages\keras\utils\data_utils.py", line 644, in get time.sleep(self.wait_time) 有大佬知道怎么解决吗,或者有谁出现了相同的问题吗??
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
【JSON解析】浅谈JSONObject的使用
简介 在程序开发过程中,在参数传递,函数返回值等方面,越来越多的使用JSON。JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,同时也易于机器解析和生成、易于理解、阅读和撰写,而且Json采用完全独立于语言的文本格式,这使得Json成为理想的数据交换语言。 JSON建构于两种结构: “名称/值”对的集合(A Collection of name/va...
卸载 x 雷某度!GitHub 标星 1.5w+,从此我只用这款全能高速下载工具!
作者 | Rocky0429 来源 | Python空间 大家好,我是 Rocky0429,一个喜欢在网上收集各种资源的蒟蒻… 网上资源眼花缭乱,下载的方式也同样千奇百怪,比如 BT 下载,磁力链接,网盘资源等等等等,下个资源可真不容易,不一样的方式要用不同的下载软件,因此某比较有名的 x 雷和某度网盘成了我经常使用的工具。 作为一个没有钱的穷鬼,某度网盘几十 kb 的下载速度让我...
2019年还剩1天,我从外包公司离职了
这日子过的可真快啊,2019年还剩1天,外包公司干了不到3个月,我离职了
我一个37岁的程序员朋友
周末了,人一旦没有点事情干,心里就瞎想,而且跟几个老男人坐在一起,更容易瞎想,我自己现在也是 30 岁了,也是无时无刻在担心自己的职业生涯,担心丢掉工作没有收入,担心身体机能下降,担心突...
计算机网络的核心概念
这是《计算机网络》系列文章的第二篇文章 我们第一篇文章讲述了计算机网络的基本概念,互联网的基本名词,什么是协议以及几种接入网以及网络传输的物理媒体,那么本篇文章我们来探讨一下网络核心、交换网络、时延、丢包、吞吐量以及计算机网络的协议层次和网络攻击。 网络核心 网络的核心是由因特网端系统和链路构成的网状网络,下面这幅图正确的表达了这一点 那么在不同的 ISP 和本地以及家庭网络是如何交换信息的呢?...
python自动下载图片
近日闲来无事,总有一种无形的力量萦绕在朕身边,让朕精神涣散,昏昏欲睡。 可是,像朕这么有职业操守的社畜怎么能在上班期间睡瞌睡呢,我不禁陷入了沉思。。。。 突然旁边的IOS同事问:‘嘿,兄弟,我发现一个网站的图片很有意思啊,能不能帮我保存下来提升我的开发灵感?’ 作为一个坚强的社畜怎么能说自己不行呢,当时朕就不假思索的答应:‘oh, It’s simple. Wait for me for a ...
一名大专同学的四个问题
【前言】   收到一封来信,赶上各种事情拖了几日,利用今天要放下工作的时机,做个回复。   2020年到了,就以这一封信,作为开年标志吧。 【正文】   您好,我是一名现在有很多困惑的大二学生。有一些问题想要向您请教。   先说一下我的基本情况,高考失利,不想复读,来到广州一所大专读计算机应用技术专业。学校是偏艺术类的,计算机专业没有实验室更不用说工作室了。而且学校的学风也不好。但我很想在计算机领...
复习一周,京东+百度一面,不小心都拿了Offer
京东和百度一面都问了啥,面试官百般刁难,可惜我全会。
Java 14 都快来了,为什么还有这么多人固守Java 8?
从Java 9开始,Java版本的发布就让人眼花缭乱了。每隔6个月,都会冒出一个新版本出来,Java 10 , Java 11, Java 12, Java 13, 到2020年3月份,...
达摩院十大科技趋势发布:2020 非同小可!
【CSDN编者按】1月2日,阿里巴巴发布《达摩院2020十大科技趋势》,十大科技趋势分别是:人工智能从感知智能向认知智能演进;计算存储一体化突破AI算力瓶颈;工业互联网的超融合;机器间大规模协作成为可能;模块化降低芯片设计门槛;规模化生产级区块链应用将走入大众;量子计算进入攻坚期;新材料推动半导体器件革新;保护数据隐私的AI技术将加速落地;云成为IT技术创新的中心 。 新的画卷,正在徐徐展开。...
轻松搭建基于 SpringBoot + Vue 的 Web 商城应用
首先介绍下在本文出现的几个比较重要的概念: 函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传。函数计算准备计算资源,并以弹性伸缩的方式运行用户代码,而用户只需根据实际代码运行所消耗的资源进行付费。Fun: Fun 是一个用于支持 Serverless 应用部署的工具,能帮助您便捷地管理函数计算、API ...
讲真,这两个IDE插件,可以让你写出质量杠杠的代码
周末躺在床上看《拯救大兵瑞恩》 周末在闲逛的时候,发现了两个优秀的 IDE 插件,据说可以提高代码的质量,我就安装了一下,试了试以后发现,确实很不错,就推荐给大家。 01、Alibaba Java 代码规范插件 《阿里巴巴 Java 开发手册》,相信大家都不会感到陌生,其 IDEA 插件的下载次数据说达到了 80 万次,我今天又贡献了一次。嘿嘿。 该项目的插件地址: https://github....
Python+OpenCV实时图像处理
目录 1、导入库文件 2、设计GUI 3、调用摄像头 4、实时图像处理 4.1、阈值二值化 4.2、边缘检测 4.3、轮廓检测 4.4、高斯滤波 4.5、色彩转换 4.6、调节对比度 5、退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试...
2020年一线城市程序员工资大调查
人才需求 一线城市共发布岗位38115个,招聘120827人。 其中 beijing 22805 guangzhou 25081 shanghai 39614 shenzhen 33327 工资分布 2020年中国一线城市程序员的平均工资为16285元,工资中位数为14583元,其中95%的人的工资位于5000到20000元之间。 和往年数据比较: yea...
为什么猝死的都是程序员,基本上不见产品经理猝死呢?
相信大家时不时听到程序员猝死的消息,但是基本上听不到产品经理猝死的消息,这是为什么呢? 我们先百度搜一下:程序员猝死,出现将近700多万条搜索结果: 搜索一下:产品经理猝死,只有400万条的搜索结果,从搜索结果数量上来看,程序员猝死的搜索结果就比产品经理猝死的搜索结果高了一倍,而且从下图可以看到,首页里面的五条搜索结果,其实只有两条才是符合条件。 所以程序员猝死的概率真的比产品经理大,并不是错...
害怕面试被问HashMap?这一篇就搞定了!
声明:本文以jdk1.8为主! 搞定HashMap 作为一个Java从业者,面试的时候肯定会被问到过HashMap,因为对于HashMap来说,可以说是Java集合中的精髓了,如果你觉得自己对它掌握的还不够好,我想今天这篇文章会非常适合你,至少,看了今天这篇文章,以后不怕面试被问HashMap了 其实在我学习HashMap的过程中,我个人觉得HashMap还是挺复杂的,如果真的想把它搞得明明白...
毕业5年,我问遍了身边的大佬,总结了他们的学习方法
我问了身边10个大佬,总结了他们的学习方法,原来成功都是有迹可循的。
程序员如何通过造轮子走向人生巅峰?
前言:你所做的事情,也许暂时看不到成果。但不要灰心,你不是没有成长,而是在扎根。 程序员圈经常流行的一句话:“不要重复造轮子”。在计算机领域,我们将封装好的组件、库,叫做轮子。因为它可以拿来直接用,直接塞进我们的项目中,就能实现对应的功能。 有些同学会问,人家都已经做好了,你再来重新弄一遍,有什么意义?这不是在浪费时间吗。 殊不知,造轮子是一种学习方式,能快速进步,造得好,是自己超强能力的表...
推荐10个堪称神器的学习网站
每天都会收到很多读者的私信,问我:“二哥,有什么推荐的学习网站吗?最近很浮躁,手头的一些网站都看烦了,想看看二哥这里有什么新鲜货。” 今天一早做了个恶梦,梦到被老板辞退了。虽然说在我们公司,只有我辞退老板的份,没有老板辞退我这一说,但是还是被吓得 4 点多都起来了。(主要是因为我掌握着公司所有的核心源码,哈哈哈) 既然 4 点多起来,就得好好利用起来。于是我就挑选了 10 个堪称神器的学习网站,推...
这些软件太强了,Windows必装!尤其程序员!
Windows可谓是大多数人的生产力工具,集娱乐办公于一体,虽然在程序员这个群体中都说苹果是信仰,但是大部分不都是从Windows过来的,而且现在依然有很多的程序员用Windows。 所以,今天我就把我私藏的Windows必装的软件分享给大家,如果有一个你没有用过甚至没有听过,那你就赚了????,这可都是提升你幸福感的高效率生产力工具哦! 走起!???? NO、1 ScreenToGif 屏幕,摄像头和白板...
阿里面试,面试官没想到一个ArrayList,我都能跟他扯半小时
我是真的没想到,面试官会这样问我ArrayList。
曾经优秀的人,怎么就突然不优秀了。
职场上有很多辛酸事,很多合伙人出局的故事,很多技术骨干被裁员的故事。说来模板都类似,曾经是名校毕业,曾经是优秀员工,曾经被领导表扬,曾经业绩突出,然而突然有一天,因为种种原因,被裁员了,...
大学四年因为知道了这32个网站,我成了别人眼中的大神!
依稀记得,毕业那天,我们导员发给我毕业证的时候对我说“你可是咱们系的风云人物啊”,哎呀,别提当时多开心啦????,嗯,我们导员是所有导员中最帅的一个,真的???? 不过,导员说的是实话,很多人都叫我大神的,为啥,因为我知道这32个网站啊,你说强不强????,这次是绝对的干货,看好啦,走起来! PS:每个网站都是学计算机混互联网必须知道的,真的牛杯,我就不过多介绍了,大家自行探索,觉得没用的,尽管留言吐槽吧???? 社...
良心推荐,我珍藏的一些Chrome插件
上次搬家的时候,发了一个朋友圈,附带的照片中不小心暴露了自己的 Chrome 浏览器插件之多,于是就有小伙伴评论说分享一下我觉得还不错的浏览器插件。 我下面就把我日常工作和学习中经常用到的一些 Chrome 浏览器插件分享给大家,随便一个都能提高你的“生活品质”和工作效率。 Markdown Here Markdown Here 可以让你更愉快的写邮件,由于支持 Markdown 直接转电子邮...
看完这篇HTTP,跟面试官扯皮就没问题了
我是一名程序员,我的主要编程语言是 Java,我更是一名 Web 开发人员,所以我必须要了解 HTTP,所以本篇文章就来带你从 HTTP 入门到进阶,看完让你有一种恍然大悟、醍醐灌顶的感觉。 最初在有网络之前,我们的电脑都是单机的,单机系统是孤立的,我还记得 05 年前那会儿家里有个电脑,想打电脑游戏还得两个人在一个电脑上玩儿,及其不方便。我就想为什么家里人不让上网,我的同学 xxx 家里有网,每...
史上最全的IDEA快捷键总结
现在Idea成了主流开发工具,这篇博客对其使用的快捷键做了总结,希望对大家的开发工作有所帮助。
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
谁是华为扫地僧?
是的,华为也有扫地僧!2020年2月11-12日,“养在深闺人不知”的华为2012实验室扫地僧们,将在华为开发者大会2020(Cloud)上,和大家见面。到时,你可以和扫地僧们,吃一个洋...
Idea 中最常用的10款插件(提高开发效率),一定要学会使用!
学习使用一些插件,可以提高开发效率。对于我们开发人员很有帮助。这篇博客介绍了开发中使用的插件。
AI 没让人类失业,搞 AI 的人先失业了
最近和几个 AI 领域的大佬闲聊 根据他们讲的消息和段子 改编出下面这个故事 如有雷同 都是巧合 1. 老王创业失败,被限制高消费 “这里写我跑路的消息实在太夸张了。” 王葱葱哼笑一下,把消息分享给群里。 阿杰也看了消息,笑了笑。在座几位也都笑了。 王葱葱是个有名的人物,21岁那年以全额奖学金进入 KMU 攻读人工智能博士,累计发表论文 40 余篇,个人技术博客更是成为深度学习领域内风向标。 ...
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆每天早上8:30推送 作者|Mr.K 编辑| Emma 来源|技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯...
最全最强!世界大学计算机专业排名总结!
我正在参与CSDN200进20,希望得到您的支持,扫码续投票5次。感谢您! (为表示感谢,您投票后私信我,我把我总结的人工智能手推笔记和思维导图发送给您,感谢!) 目录 泰晤士高等教育世界大学排名 QS 世界大学排名 US News 世界大学排名 世界大学学术排名(Academic Ranking of World Universities) 泰晤士高等教育世界大学排名 中国共...
作为一名大学生,如何在B站上快乐的学习?
B站是个宝,谁用谁知道???? 作为一名大学生,你必须掌握的一项能力就是自学能力,很多看起来很牛X的人,你可以了解下,人家私底下一定是花大量的时间自学的,你可能会说,我也想学习啊,可是嘞,该学习啥嘞,不怕告诉你,互联网时代,最不缺的就是学习资源,最宝贵的是啥? 你可能会说是时间,不,不是时间,而是你的注意力,懂了吧! 那么,你说学习资源多,我咋不知道,那今天我就告诉你一个你必须知道的学习的地方,人称...
那些年,我们信了课本里的那些鬼话
教材永远都是有错误的,从小学到大学,我们不断的学习了很多错误知识。 斑羚飞渡 在我们学习的很多小学课文里,有很多是错误文章,或者说是假课文。像《斑羚飞渡》: 随着镰刀头羊的那声吼叫,整个斑羚群迅速分成两拨,老年斑羚为一拨,年轻斑羚为一拨。 就在这时,我看见,从那拨老斑羚里走出一只公斑羚来。公斑羚朝那拨年轻斑羚示意性地咩了一声,一只半大的斑羚应声走了出来。一老一少走到伤心崖,后退了几步,突...
一个程序在计算机中是如何运行的?超级干货!!!
强烈声明:本文很干,请自备茶水!???? 开门见山,咱不说废话! 你有没有想过,你写的程序,是如何在计算机中运行的吗?比如我们搞Java的,肯定写过这段代码 public class HelloWorld { public static void main(String[] args) { System.out.println("Hello World!"); } ...
【蘑菇街技术部年会】程序员与女神共舞,鼻血再次没止住。(文末内推)
蘑菇街技术部的年会,别开生面,一样全是美女。
那个在阿里养猪的工程师,5年了……
简介: 在阿里,走过1825天,没有趴下,依旧斗志满满,被称为“五年陈”。他们会被授予一枚戒指,过程就叫做“授戒仪式”。今天,咱们听听阿里的那些“五年陈”们的故事。 下一个五年,猪圈见! 我就是那个在养猪场里敲代码的工程师,一年多前我和20位工程师去了四川的猪场,出发前总架构师慷慨激昂的说:同学们,中国的养猪产业将因为我们而改变。但到了猪场,发现根本不是那么回事:要个WIFI,没有;...
为什么程序猿都不愿意去外包?
分享外包的组织架构,盈利模式,亲身经历,以及根据一些外包朋友的反馈,写了这篇文章 ,希望对正在找工作的老铁有所帮助
Java校招入职华为,半年后我跑路了
何来 我,一个双非本科弟弟,有幸在 19 届的秋招中得到前东家华为(以下简称 hw)的赏识,当时秋招签订就业协议,说是入了某 java bg,之后一系列组织架构调整原因等等让人无法理解的神操作,最终毕业前夕,被通知调往其他 bg 做嵌入式开发(纯 C 语言)。 由于已至于校招末尾,之前拿到的其他 offer 又无法再收回,一时感到无力回天,只得默默接受。 毕业后,直接入职开始了嵌入式苦旅,由于从未...
立即提问