keras如何为已经训练好的模型添加层?

已经训练好的model,比如想在后面再添加lstm或者全连接层应该怎么做呢?

1个回答

1.先加载已经训练好的模型model
model = tf.keras.models.load_model('model.h5')
2.在model中添加层
model.add(layers.Dense(4))

qq_44628313
ヤヤロロロ 回复weixin_450443那可以参考一下这篇文章 https://blog.csdn.net/qq_36758914/article/details/104794964
3 个月之前 回复
weixin_45044307
weixin_45044307 可是预先训练好的模型我只想要其中一部分,这怎么办?
3 个月之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
训练dnn网络,添加全连接层,keras报错

![图片说明](https://img-ask.csdn.net/upload/201804/09/1523244974_485144.png) 更改了keras的版本号,依然报错

Keras里,怎么在构建的Model类模型后面加层?

使用keras_transformer库,用get_model()定义了一个完整的模型model。 想在model后面添加CFR层和Dense层,应该怎么做呢? 看了https://ask.csdn.net/questions/1061912 的回答,但是model.add()只能用在Sequential类里。

keras薛定谔的训练结果问题

刚刚开始学习keras,今天在测试非线性函数拟合的时候发现即便用了‘relu’激活函数还是没有办法很好的拟合结果,这已经困扰我很久了,而且更奇怪的是有一句看起来和结果毫无关系的语句居然会直接改变结果的分布 就是这一句: ``` print(y_pred) ``` 没有加的时候的结果: ![图片说明](https://img-ask.csdn.net/upload/202004/24/1587719740_46631.jpg) 加了之后的结果: ![图片说明](https://img-ask.csdn.net/upload/202004/24/1587719761_631438.jpg) 或者 ![图片说明](https://img-ask.csdn.net/upload/202004/24/1587719776_946600.jpg) 代码如下: ``` import keras import numpy as np import matplotlib.pyplot as plt #按顺序构成的模型 from keras.models import Sequential #全连接层 from keras.layers import Dense,Activation from keras.optimizers import SGD #使用numpy生成随机数据 x_data = np.linspace(-0.5,0.5,200) noise = np.random.normal(0,0.02,x_data.shape) y_data = np.square(x_data) + noise #显示随机点 plt.scatter(x_data,y_data) plt.show() # 构建一个顺序模型 model = Sequential() # 在模型中添加一个全连接层 model.add(Dense(units=10,input_dim=1,activation='relu')) # model.add(Activation("relu"))不行? #model.add(Activation("relu")) model.add(Dense(units=1,activation='relu')) # model.add(Activation("relu"))不行 #model.add(Activation("relu")) # 定义优化算法 sgd = SGD(lr=0.3) model.compile(optimizer=sgd,loss="mse") for step in range(3000): cost = model.train_on_batch(x_data,y_data) if step%500==0: print("cost: ",cost) W,b = model.layers[0].get_weights() print("W: ",W,"b: ",b) # x_data输入网络中,得到预测值 y_pred = model.predict(x_data) # 加不加这一句会对结果造成直接影响 print(y_pred) plt.scatter(x_data,y_pred) plt.plot(x_data,y_pred,"r-",lw=3) plt.show() ```

keras实现人脸识别,训练失败……请教大神指点迷津!!!

![图片说明](https://img-ask.csdn.net/upload/201904/26/1556209614_615215.jpg) 各位大神,如图所示,在训练过程中,第二轮开始出现问题,这是什么原因呢? 代码如下: ------------------------------------------------- ``` import random import keras import numpy as np import cv2 from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.models import load_model from keras import backend as K from source_data import load_dataset,resize_img #定义数据集格式 class Dataset: def __init__(self, path_name): #训练数据集 self.train_images = None self.train_labels = None #测试集 self.valid_images = None self.valid_labels = None #样本数据 self.test_images = None self.test_labels = None #load路径 self.path_name = path_name #维度顺序 self.input_shape = None #加载数据集并按照交叉验证的原则划分数据集,完成数据预处理 def load(self,img_rows=64, img_cols=64,img_channels = 3,nb_classes = 2): #加载数据集到内存 images,labels=load_dataset(self.path_name)#函数调用 train_images, valid_images, train_labels, valid_labels= train_test_split(images, labels, test_size = 0.3, random_state = random.randint(0, 100)) _, test_images, _, test_labels = train_test_split(images, labels, test_size = 0.5, random_state = random.randint(0, 100)) #根据backend类型确定输入图片数据时的顺序为:channels,rows,cols,否则:rows,cols,channels #这部分代码就是根据keras库要求的维度顺序重组训练数据集 train_images = train_images.reshape(train_images.shape[0], img_rows, img_cols, img_channels) valid_images = valid_images.reshape(valid_images.shape[0], img_rows, img_cols, img_channels) test_images = test_images.reshape(test_images.shape[0], img_rows, img_cols, img_channels) self.input_shape = (img_rows, img_cols, img_channels) #输出训练集、验证集、测试集的数量 print(train_images.shape[0], 'train samples') print(valid_images.shape[0], 'valid samples') print(test_images.shape[0], 'test samples') #我们的模型使用categorical_crossentropy作为损失函数,因此需要根据类别数量nb_classes将 #类别标签进行one-hot编码使其向量化,在这里我们的类别只有两种,经过转化后标签数据变为二维 train_labels = np_utils.to_categorical(train_labels, nb_classes) valid_labels = np_utils.to_categorical(valid_labels, nb_classes) test_labels = np_utils.to_categorical(test_labels, nb_classes) #像素数据浮点化以便归一化 train_images = train_images.astype('float32') valid_images = valid_images.astype('float32') test_images = test_images.astype('float32') #将其归一化,图像的各像素值归一化到0—1区间 train_images /= 255 valid_images /= 255 test_images /= 255 self.train_images = train_images self.valid_images = valid_images self.test_images = test_images self.train_labels = train_labels self.valid_labels = valid_labels self.test_labels = test_labels class Model: def __init__(self): self.model = None #建立keras模型 def build_model(self, dataset, nb_classes = 2): #构建一个空的网络模型,序贯模型或线性堆叠模型,添加各个layer self.model = Sequential() #以下代码将顺序添加CNN网络需要的各层,一个add就是一个网络层 self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape = dataset.input_shape)) #1 2维卷积层 self.model.add(Activation('relu')) #2 激活函数层 self.model.add(Convolution2D(32, 3, 3)) #3 2维卷积层 self.model.add(Activation('relu')) #4 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #5 池化层 self.model.add(Dropout(0.25)) #6 Dropout层 self.model.add(Convolution2D(64, 3, 3, border_mode='same')) #7 2维卷积层 self.model.add(Activation('relu')) #8 激活函数层 self.model.add(Convolution2D(64, 3, 3)) #9 2维卷积层 self.model.add(Activation('relu')) #10 激活函数层 self.model.add(MaxPooling2D(pool_size=(2, 2))) #11 池化层 self.model.add(Dropout(0.25)) #12 Dropout层 self.model.add(Flatten()) #13 Flatten层 self.model.add(Dense(512)) #14 Dense层,又被称作全连接层 self.model.add(Activation('relu')) #15 激活函数层 self.model.add(Dropout(0.5)) #16 Dropout层 self.model.add(Dense(nb_classes)) #17 Dense层 self.model.add(Activation('softmax')) #18 分类层,输出最终结果 #Prints a string summary of the network self.model.summary() #训练模型 def train(self, dataset, batch_size = 20, nb_epoch = 10, data_augmentation = True): sgd = SGD(lr = 0.01, decay = 1e-6, momentum = 0.9, nesterov = True) #采用随机梯度下降优化器进行训练,首先生成一个优化器对象 self.model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy']) #完成实际的模型配置 #不使用数据提升,所谓的提升就是从我们提供的训练数据中利用旋转、翻转、加噪声等方法提升训练数据规模,增加模型训练量 if not data_augmentation: self.model.fit(dataset.train_images, dataset.train_labels, batch_size = batch_size, epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels), shuffle = True) #使用实时数据提升 else: #定义数据生成器用于数据提升,其返回一个生成器对象datagen,datagen每被调用一 #次其生成一组数据(顺序生成),节省内存,其实就是python的数据生成器 datagen = ImageDataGenerator( featurewise_center = False, #是否使输入数据去中心化(均值为0), samplewise_center = False, #是否使输入数据的每个样本均值为0 featurewise_std_normalization = False, #是否数据标准化(输入数据除以数据集的标准差) samplewise_std_normalization = False, #是否将每个样本数据除以自身的标准差 zca_whitening = False, #是否对输入数据施以ZCA白化 rotation_range = 20, #数据提升时图片随机转动的角度(范围为0~180) width_shift_range = 0.2, #数据提升时图片水平偏移的幅度(单位为图片宽度的占比,0~1之间的浮点数) height_shift_range = 0.2, #同上,只不过这里是垂直 horizontal_flip = True, #是否进行随机水平翻转 vertical_flip = False) #是否进行随机垂直翻转 #计算整个训练样本集的数量以用于特征值归一化等处理 datagen.fit(dataset.train_images) #利用生成器开始训练模型—0.7*N self.model.fit_generator(datagen.flow(dataset.train_images, dataset.train_labels, batch_size = batch_size), steps_per_epoch = dataset.train_images.shape[0], epochs = nb_epoch, validation_data = (dataset.valid_images, dataset.valid_labels)) if __name__ == '__main__': dataset = Dataset('e:\saving') dataset.load()#实例操作,完成实际数据加载和预处理 model = Model() model.build_model(dataset) #训练数据 model.train(dataset) ```

请问tensorflow或者keras中想在神经网络同一层不同节点中设置不同激活函数该怎么实现?

tensorflow和keras一设置激活函数好像就是会默认设置一整层所有节点都会是同一个激活函数,请问要如何实现同一层不同节点有不同激活函数?

用keras制作数据集的问题

有没有大神用keras做过边缘检测的模型?比如用BSDS500数据集,要怎么训练? 数据集要怎么用?官方文档查不到类似的问题。。我知道x_train要用照片,那y_train是ground truth,但是完全不会用啊 推荐标签:keras, 边缘检测

用keras 实现的resnet,但是训练下来过拟合严重,请问怎么加入正则化?

## 代码如下,想知道在哪里可以加入正则化?或者如何优化?感谢!!!! ![图片说明](https://img-ask.csdn.net/upload/201901/02/1546415601_34467.jpg)

求问怎么加dropout啊,急急急,在线等

#!/usr/bin/env python # encoding: utf-8 import matplotlib.pylab as plt from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.layers import Dropout import numpy as np from sklearn import datasets from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from keras.models import Sequential import sys import tensorflow as tf sys.path.append("../process")#添加其他文件夹 import data_input#导入其他模块 from traffic_network import LeNet import numpy as np from keras.models import Sequential from keras.layers import Dropout from keras.layers import Dense from keras.constraints import max_norm from keras.optimizers import SGD sgd = SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False) def train(aug, model,train_x,train_y,test_x,test_y): model.add(Dropout(rate=0.0, input_shape=(4,))) model.compile(loss="categorical_crossentropy", optimizer="sgd",metrics=["accuracy"])#配置 #model.fit(train_x,train_y,batch_size,epochs,validation_data=(test_x,test_y)) _history = model.fit_generator(aug.flow(train_x,train_y,batch_size=batch_size), validation_data=(test_x,test_y),steps_per_epoch=len(train_x)//batch_size, epochs=epochs,verbose=1) #拟合,具体fit_generator请查阅其他文档,steps_per_epoch是每次迭代,需要迭代多少个batch_size,validation_data为test数据,直接做验证,不参与训练 model.save("../predict/traffic_model.h5") print(_history.history.keys()) plt.style.use("ggplot")#matplotlib的美化样式 plt.figure() N = epochs plt.plot(np.arange(0,N),_history.history["loss"],label ="train_loss")#model的history有四个属性,loss,val_loss,acc,val_acc plt.plot(np.arange(0,N),_history.history["val_loss"],label="val_loss") plt.plot(np.arange(0,N),_history.history["acc"],label="train_acc") plt.plot(np.arange(0,N),_history.history["val_acc"],label="val_acc") plt.title("loss and accuracy") plt.xlabel("epoch") plt.ylabel("loss/acc") plt.legend(loc="best") plt.savefig("../result/result.png") plt.show() if __name__ =="__main__": channel = 3 height = 32 width = 32 class_num = 8 norm_size = 32#参数 batch_size = 64 epochs = 1000#40 DROPOUT = 0.3 model = LeNet.neural(channel=channel, height=height, width=width, classes=class_num)#网络 train_x, train_y = data_input.load_data("../data/train", norm_size, class_num) test_x, test_y = data_input.load_data("../data/test", norm_size, class_num)#生成数据 aug = ImageDataGenerator(rotation_range=30,width_shift_range=0.1, height_shift_range=0.1,shear_range=0.2,zoom_range=0.2, horizontal_flip=True,fill_mode="nearest")#数据增强,生成迭代器 train(aug,model,train_x,train_y,test_x,test_y)#训练 我这里怎么加dropout啊,rate太高val_acc就会变成恒定是1.0然后train_acc识别率也也上不去了,求大神指导啊

keras下self-attention和Recall, F1-socre值实现问题?

麻烦大神帮忙看一下: (1)为何返回不了Precise, Recall, F1-socre值? (2)为何在CNN前加了self-attention层,训练后的acc反而降低在0.78上下? 【研一小白求详解,万分感谢大神】 ``` import os #导入os模块,用于确认文件是否存在 import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.callbacks import Callback from sklearn.metrics import f1_score, precision_score, recall_score maxlen = 380#句子长截断为100 training_samples = 20000#在 200 个样本上训练 validation_samples = 5000#在 10 000 个样本上验证 max_words = 10000#只考虑数据集中前 10 000 个最常见的单词 def dataProcess(): imdb_dir = 'data/aclImdb'#基本路径,经常要打开这个 #处理训练集 train_dir = os.path.join(imdb_dir, 'train')#添加子路径 train_labels = [] train_texts = [] for label_type in ['neg', 'pos']: dir_name = os.path.join(train_dir, label_type) for fname in os.listdir(dir_name):#获取目录下所有文件名字 if fname[-4:] == '.txt': f = open(os.path.join(dir_name, fname),'r',encoding='utf8') train_texts.append(f.read()) f.close() if label_type == 'neg': train_labels.append(0) else:train_labels.append(1) #处理测试集 test_dir = os.path.join(imdb_dir, 'test') test_labels = [] test_texts = [] for label_type in ['neg', 'pos']: dir_name = os.path.join(test_dir, label_type) for fname in sorted(os.listdir(dir_name)): if fname[-4:] == '.txt': f = open(os.path.join(dir_name, fname),'r',encoding='utf8') test_texts.append(f.read()) f.close() if label_type == 'neg': test_labels.append(0) else: test_labels.append(1) #对数据进行分词和划分训练集和数据集 tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(train_texts)#构建单词索引结构 sequences = tokenizer.texts_to_sequences(train_texts)#整数索引的向量化模型 word_index = tokenizer.word_index#索引字典 print('Found %s unique tokens.' % len(word_index)) data = pad_sequences(sequences, maxlen=maxlen) train_labels = np.asarray(train_labels)#把列表转化为数组 print('Shape of data tensor:', data.shape) print('Shape of label tensor:', train_labels.shape) indices = np.arange(data.shape[0])#评论顺序0,1,2,3 np.random.shuffle(indices)#把评论顺序打乱3,1,2,0 data = data[indices] train_labels = train_labels[indices] x_train = data[:training_samples] y_train = train_labels[:training_samples] x_val = data[training_samples: training_samples + validation_samples] y_val = train_labels[training_samples: training_samples + validation_samples] #同样需要将测试集向量化 test_sequences = tokenizer.texts_to_sequences(test_texts) x_test = pad_sequences(test_sequences, maxlen=maxlen) y_test = np.asarray(test_labels) return x_train,y_train,x_val,y_val,x_test,y_test,word_index embedding_dim = 100#特征数设为100 #"""将预训练的glove词嵌入文件,构建成可以加载到embedding层中的嵌入矩阵""" def load_glove(word_index):#导入glove的词向量 embedding_file='data/glove.6B' embeddings_index={}#定义字典 f = open(os.path.join(embedding_file, 'glove.6B.100d.txt'),'r',encoding='utf8') for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() # """转化为矩阵:构建可以加载到embedding层中的嵌入矩阵,形为(max_words(单词数), embedding_dim(向量维数)) """ embedding_matrix = np.zeros((max_words, embedding_dim)) for word, i in word_index.items():#字典里面的单词和索引 if i >= max_words:continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector return embedding_matrix if __name__ == '__main__': x_train, y_train, x_val, y_val,x_test,y_test, word_index = dataProcess() embedding_matrix=load_glove(word_index) #可以把得到的嵌入矩阵保存起来,方便后面fine-tune""" # #保存 from keras.models import Sequential from keras.layers.core import Dense,Dropout,Activation,Flatten from keras.layers.recurrent import LSTM from keras.layers import Embedding from keras.layers import Bidirectional from keras.layers import Conv1D, MaxPooling1D import keras from keras_self_attention import SeqSelfAttention model = Sequential() model.add(Embedding(max_words, embedding_dim, input_length=maxlen)) model.add(SeqSelfAttention(attention_activation='sigmod')) model.add(Conv1D(filters = 64, kernel_size = 5, padding = 'same', activation = 'relu')) model.add(MaxPooling1D(pool_size = 4)) model.add(Dropout(0.25)) model.add(Bidirectional(LSTM(64,activation='tanh',dropout=0.2,recurrent_dropout=0.2))) model.add(Dense(256, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() model.layers[0].set_weights([embedding_matrix]) model.layers[0].trainable = False model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) class Metrics(Callback): def on_train_begin(self, logs={}): self.val_f1s = [] self.val_recalls = [] self.val_precisions = [] def on_epoch_end(self, epoch, logs={}): val_predict = (np.asarray(self.model.predict(self.validation_data[0]))).round() val_targ = self.validation_data[1] _val_f1 = f1_score(val_targ, val_predict) _val_recall = recall_score(val_targ, val_predict) _val_precision = precision_score(val_targ, val_predict) self.val_f1s.append(_val_f1) self.val_recalls.append(_val_recall) self.val_precisions.append(_val_precision) return metrics = Metrics() history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_val, y_val), callbacks=[metrics]) model.save_weights('pre_trained_glove_model.h5')#保存结果 ```

tensorflow CNN训练mnist数据集后识别自己写的数字效果不好

自己搭建的cnn,用mnist数据集训练的模型,准确率大概在97%,但是用手机拍了几张手写照片,灰度化之后用模型测试发现效果很差。。。0给认成了8,不知道为什么,有没有遇到类似问题的朋友 模型参考的tensorflow 1.0 学习:用CNN进行图像分类 - denny402 - 博客园 https://www.cnblogs.com/denny402/p/6931338.html

如何可视化tensorflow版的fater rcnn的训练过程?

小白一枚,github下的faster rcnn tf版在win10系统上,代码里没有输出训练日志的语句无log文件, 想问一下怎么添加语句可以通过tensorboard显示?下为train代码 import time import tensorflow as tf import numpy as np from tensorflow.python import pywrap_tensorflow import lib.config.config as cfg from lib.datasets import roidb as rdl_roidb from lib.datasets.factory import get_imdb from lib.datasets.imdb import imdb as imdb2 from lib.layer_utils.roi_data_layer import RoIDataLayer from lib.nets.vgg16 import vgg16 from lib.utils.timer import Timer try: import cPickle as pickle except ImportError: import pickle import os def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if True: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') rdl_roidb.prepare_roidb(imdb) print('done') return imdb.roidb def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method("gt") print('Set proposal method: {:s}'.format("gt")) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = imdb2(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb class Train: def __init__(self): # Create network if cfg.FLAGS.net == 'vgg16': self.net = vgg16(batch_size=cfg.FLAGS.ims_per_batch) else: raise NotImplementedError self.imdb, self.roidb = combined_roidb("voc_2007_trainval") self.data_layer = RoIDataLayer(self.roidb, self.imdb.num_classes) self.output_dir = cfg.get_output_dir(self.imdb, 'default') def train(self): # Create session tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True sess = tf.Session(config=tfconfig) with sess.graph.as_default(): tf.set_random_seed(cfg.FLAGS.rng_seed) layers = self.net.create_architecture(sess, "TRAIN", self.imdb.num_classes, tag='default') loss = layers['total_loss'] lr = tf.Variable(cfg.FLAGS.learning_rate, trainable=False) momentum = cfg.FLAGS.momentum optimizer = tf.train.MomentumOptimizer(lr, momentum) gvs = optimizer.compute_gradients(loss) # Double bias # Double the gradient of the bias if set if cfg.FLAGS.double_bias: final_gvs = [] with tf.variable_scope('Gradient_Mult'): for grad, var in gvs: scale = 1. if cfg.FLAGS.double_bias and '/biases:' in var.name: scale *= 2. if not np.allclose(scale, 1.0): grad = tf.multiply(grad, scale) final_gvs.append((grad, var)) train_op = optimizer.apply_gradients(final_gvs) else: train_op = optimizer.apply_gradients(gvs) # We will handle the snapshots ourselves self.saver = tf.train.Saver(max_to_keep=100000) # Write the train and validation information to tensorboard # writer = tf.summary.FileWriter(self.tbdir, sess.graph) # valwriter = tf.summary.FileWriter(self.tbvaldir) # Load weights # Fresh train directly from ImageNet weights print('Loading initial model weights from {:s}'.format(cfg.FLAGS.pretrained_model)) variables = tf.global_variables() # Initialize all variables first sess.run(tf.variables_initializer(variables, name='init')) var_keep_dic = self.get_variables_in_checkpoint_file(cfg.FLAGS.pretrained_model) # Get the variables to restore, ignorizing the variables to fix variables_to_restore = self.net.get_variables_to_restore(variables, var_keep_dic) restorer = tf.train.Saver(variables_to_restore) restorer.restore(sess, cfg.FLAGS.pretrained_model) print('Loaded.') # Need to fix the variables before loading, so that the RGB weights are changed to BGR # For VGG16 it also changes the convolutional weights fc6 and fc7 to # fully connected weights self.net.fix_variables(sess, cfg.FLAGS.pretrained_model) print('Fixed.') sess.run(tf.assign(lr, cfg.FLAGS.learning_rate)) last_snapshot_iter = 0 timer = Timer() iter = last_snapshot_iter + 1 last_summary_time = time.time() while iter < cfg.FLAGS.max_iters + 1: # Learning rate if iter == cfg.FLAGS.step_size + 1: # Add snapshot here before reducing the learning rate # self.snapshot(sess, iter) sess.run(tf.assign(lr, cfg.FLAGS.learning_rate * cfg.FLAGS.gamma)) timer.tic() # Get training data, one batch at a time blobs = self.data_layer.forward() # Compute the graph without summary rpn_loss_cls, rpn_loss_box, loss_cls, loss_box, total_loss = self.net.train_step(sess, blobs, train_op) timer.toc() iter += 1 # Display training information if iter % (cfg.FLAGS.display) == 0: print('iter: %d / %d, total loss: %.6f\n >>> rpn_loss_cls: %.6f\n ' '>>> rpn_loss_box: %.6f\n >>> loss_cls: %.6f\n >>> loss_box: %.6f\n ' % \ (iter, cfg.FLAGS.max_iters, total_loss, rpn_loss_cls, rpn_loss_box, loss_cls, loss_box)) print('speed: {:.3f}s / iter'.format(timer.average_time)) if iter % cfg.FLAGS.snapshot_iterations == 0: self.snapshot(sess, iter ) def get_variables_in_checkpoint_file(self, file_name): try: reader = pywrap_tensorflow.NewCheckpointReader(file_name) var_to_shape_map = reader.get_variable_to_shape_map() return var_to_shape_map except Exception as e: # pylint: disable=broad-except print(str(e)) if "corrupted compressed block contents" in str(e): print("It's likely that your checkpoint file has been compressed " "with SNAPPY.") def snapshot(self, sess, iter): net = self.net if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # Store the model snapshot filename = 'vgg16_faster_rcnn_iter_{:d}'.format(iter) + '.ckpt' filename = os.path.join(self.output_dir, filename) self.saver.save(sess, filename) print('Wrote snapshot to: {:s}'.format(filename)) # Also store some meta information, random state, etc. nfilename = 'vgg16_faster_rcnn_iter_{:d}'.format(iter) + '.pkl' nfilename = os.path.join(self.output_dir, nfilename) # current state of numpy random st0 = np.random.get_state() # current position in the database cur = self.data_layer._cur # current shuffled indeces of the database perm = self.data_layer._perm # Dump the meta info with open(nfilename, 'wb') as fid: pickle.dump(st0, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(cur, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(perm, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(iter, fid, pickle.HIGHEST_PROTOCOL) return filename, nfilename if __name__ == '__main__': train = Train() train.train()

简单BP神经网络训练鸢尾花

大佬们,请问result为什么大于0.8就是1,小于0.2是0,其他值则为0.5啊? ``` import pandas as pd import matplotlib.pyplot as plt import numpy as np import tensorflow as tf iris = pd.read_csv("Iris.txt",names=['a','b','c','d','class']) iris['class'][iris['class']=="Iris-setosa"] = 0 iris['class'][iris['class']=="Iris-versicolor"] = 0.5 iris['class'][iris['class']=="Iris-virginica"] = 1 iris_class1 = iris[iris["class"]==0] iris_class2 = iris[iris["class"]==0.5] iris_class3 = iris[iris["class"]==1] temp = np.array(iris) train_data = np.delete(temp,range(len(temp))[::3],axis=0) test_data = temp[::3,:] """ 添加神经网络层的函数 inputs -- 输入内容 in_size -- 输入尺寸 out_size -- 输出尺寸 activation_function --- 激励函数,可以不用输入 """ def add_layer(inputs,in_size,out_size,activation_function=None): W = tf.Variable(tf.zeros([in_size,out_size])+0.01) #定义,in_size行,out_size列的矩阵,随机矩阵,全为0效果不佳 b = tf.Variable(tf.zeros([1,out_size])+0.01) #不建议为0 Wx_plus_b = tf.matmul(inputs,W) + b # WX + b if activation_function is None: #如果有激励函数就激励,否则直接输出 output = Wx_plus_b else: output = activation_function(Wx_plus_b) return output X = tf.placeholder(tf.float32,[None,4]) Y = tf.placeholder(tf.float32,[None,1]) output1 = add_layer(X,4,8,activation_function = tf.nn.sigmoid) output2 = add_layer(output1,8,3,activation_function = tf.nn.sigmoid) temp_y = add_layer(output2,3,1,activation_function = tf.nn.sigmoid) #先求平方,再求和,在求平均 loss = tf.reduce_mean(tf.reduce_sum(tf.square(Y-temp_y),reduction_indices=[1])) #通过优化器,以0.001的学习率,减小误差loss train_step = tf.train.AdamOptimizer(0.001).minimize(loss) #拆分训练集数据集,分为输入和输出 train_x = train_data[:,:4] train_y = train_data[:,-1:] sess = tf.Session() sess.run(tf.global_variables_initializer()) save_process = [] for i in range(90000):#训练90000次 sess.run(train_step,feed_dict={X:train_x,Y:train_y}) if i%300 == 0:#每300次记录损失值(偏差值) save_process.append(sess.run(loss,feed_dict={X:train_x,Y:train_y})) #第前两个数据比较大,踢掉 # save_process = np.delete(save_process,[0,1]) # plt.plot(range(len(save_process)),save_process) def compare_numpy(a,b,is_num=False): """比较两个维度相同的数组,返回相同数字个数/相似度""" num = 0 for i in range(len(a)): if a[i]==b[i]: num+=1 return num if is_num else num/len(a) test_x = test_data[:,:4] test_y = test_data[:,-1:] result = sess.run(temp_y,feed_dict={X:test_x}) result[result > 0.8] = 1 result[result < 0.2] = 0 result[(result < 0.8) & ( result > 0.2)] = 0.5 print("总数:",len(test_data)," 准确个数:",compare_numpy(result,test_y,True)," 精确度:",compare_numpy(result,test_y)) ```

Tensorflow建一个神经网络,输出数据只有一个谱型,且杂乱

建了一个神经网络,输入节点3个,输出250个,两个隐藏层,节点数分别为200个。 训练数据集为100000个。运行完后用测试集验证,发现预测的谱线杂乱无章,跟测试的谱线集完全无关,从图中看感觉是在一个谱型附近震荡。 初学者不明白是什么原因,不知有没有大神可以稍加指教。 ``` import tensorflow as tf import numpy as np # 添加层 def add_layer(inputs, in_size, out_size,n_layer,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) Wx_plus_b = tf.matmul(inputs, Weights) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # 1.训练的数据 p_1= np.loadtxt('D:p_train.txt') p=np.reshape(p_1,(3,100000)) s_1= np.loadtxt('D:s_train.txt') s=np.reshape(s_1,(250,100000)) pmin=p.min() pmax=p.max() p_train=(p-pmin)/(pmax-pmin) smin=s.min() smax=s.max() s_train=(s-smin)/(smax-smin) p_train=np.transpose(p_train) s_train=np.transpose(s_train) p_train=p_train.tolist() s_train=s_train.tolist() # 2.测试的数据 p_2=np.loadtxt('D:p_test.txt') p2=np.reshape(p_2,(3,5501)) s_2=np.loadtxt('D:s_test.txt') s2=np.reshape(s_2,(250,5501)) pmin2=p2.min() pmax2=p2.max() p_test=(p2-pmin2)/(pmax2-pmin2) smin2=s2.min() smax2=s2.max() s_test=(s2-smin2)/(smax2-smin2) p_test=np.transpose(p_test) s_test=np.transpose(s_test) p_test=p_test.tolist() s_test=s_test.tolist() # 3.定义占位符 px = tf.placeholder(tf.float32, [None, 3]) sx = tf.placeholder(tf.float32, [None,250]) sy=tf.placeholder(tf.float32,[None,250]) # 4.定义神经层:隐藏层和预测层 l1 = add_layer(px, 3, 200, n_layer=1,activation_function=tf.nn.sigmoid) l2=add_layer(l1,200,200,n_layer=2,activation_function=tf.nn.sigmoid) prediction = add_layer(l2, 200, 250, n_layer=3,activation_function=None) # 5.定义 loss 表达式 mse loss = tf.reduce_mean(tf.square(sx - prediction)) #loss2 # 6.选择 optimizer 使 loss 达到最小 train_step = tf.train.AdamOptimizer(0.01,epsilon=1e-8).minimize(loss) #7.初始化变量 init=tf.initialize_all_variables() #8.定义会话 sess = tf.Session() #9.运行 sess.run(init) #10.查看loss变化 for step in range(1000): sess.run(train_step, feed_dict={px:p_train, sx:s_train}) if step % 50 == 0: print(sess.run(loss,feed_dict={sx:s_train,px:p_train})) prediction_test=sess.run(prediction,feed_dict={px:p_test}) ```

python如何自定义权重损失函数?

我利用keras的神经网络训练一个模型,被训练的数据是一个很大的二维数组,每一行是一个类别,总共有3种类别。被训练出的模型中包括3种类别(暂且称为A,B,C)。现在B类的预测准确率太高了,而A和C类的预测准确率较低,我想在把B类准确率适当减低的情况下来提高A和C类的预测准确率。请问该怎么操作? 代码如下,我从网上查了一些代码,自己不是特别明白,尝试后,出现了错误。请问该如何修改?下面添加的图片中被划红线圈住的代码是添加上去的,最终运行出错了,请问怎么修改,或者重新帮我写一个权重损失代码代码,跪谢 def custom_loss_4(y_true, y_pred, weights): return K.mean(K.abs(y_true - y_pred) * weights) model = models.Sequential() model.add(layers.Dense(200, activation = "relu", input_shape = (1175, ))) weights = np.random.randn(*X_train.shape) weights_tensor = Input(shape=(3,)) cl4 = partial(custom_loss_4,weights=weights_tensor) model.add(layers.Dropout(0.7)) model.add(layers.Dense(100, activation = "relu")) model.add(layers.Dropout(0.5)) model.add(layers.Dense(3, activation = "softmax")) model.compile(optimizer = "rmsprop", loss = cl4, metrics = ["accuracy"]) model.summary() ![图片说明](https://img-ask.csdn.net/upload/201910/13/1570937131_951272.jpg) ![图片说明](https://img-ask.csdn.net/upload/201910/13/1570936461_762097.png) ![图片说明](https://img-ask.csdn.net/upload/201910/13/1570936605_599703.png) 补充一下:我在前面对数据做过了不平衡调整,定义的函数如下: def calc_class_weight(total_y): my_class_weight = class_weight.compute_class_weight("balanced", np.unique(total_y), total_y) return my_class_weight

sklearn中random_state问题

在sklearn中train_test_split()函数 中random_state这个参数有什么用?我只知道选取不同的值对模型训练有影响。

4小时玩转微信小程序——基础入门与微信支付实战

这是一个门针对零基础学员学习微信小程序开发的视频教学课程。课程采用腾讯官方文档作为教程的唯一技术资料来源。杜绝网络上质量良莠不齐的资料给学员学习带来的障碍。 视频课程按照开发工具的下载、安装、使用、程序结构、视图层、逻辑层、微信小程序等几个部分组织课程,详细讲解整个小程序的开发过程

Python可以这样学(第四季:数据分析与科学计算可视化)

董付国老师系列教材《Python程序设计(第2版)》(ISBN:9787302436515)、《Python可以这样学》(ISBN:9787302456469)配套视频,在教材基础上又增加了大量内容,通过实例讲解numpy、scipy、pandas、statistics、matplotlib等标准库和扩展库用法。

组成原理课程设计(实现机器数的真值还原等功能)

实现机器数的真值还原(定点小数)、定点小数的单符号位补码加减运算、定点小数的补码乘法运算和浮点数的加减运算。

javaWeb图书馆管理系统源码mysql版本

系统介绍 图书馆管理系统主要的目的是实现图书馆的信息化管理。图书馆的主要业务就是新书的借阅和归还,因此系统最核心的功能便是实现图书的借阅和归还。此外,还需要提供图书的信息查询、读者图书借阅情况的查询等

土豆浏览器

土豆浏览器可以用来看各种搞笑、电影、电视剧视频

Java面试题大全(2020版)

发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~ 本套Java面试题大全,全的不能再全,哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别? JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。 JRE:Java Runtime Environ...

Java8零基础入门视频教程

这门课程基于主流的java8平台,由浅入深的详细讲解了java SE的开发技术,可以使java方向的入门学员,快速扎实的掌握java开发技术!

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

TTP229触摸代码以及触摸返回值处理

自己总结的ttp229触摸代码,触摸代码以及触摸按键处理

网络工程师小白入门--【思科CCNA、华为HCNA等网络工程师认证】

本课程适合CCNA或HCNA网络小白同志,高手请绕道,可以直接学习进价课程。通过本预科课程的学习,为学习网络工程师、思科CCNA、华为HCNA这些认证打下坚实的基础! 重要!思科认证2020年2月24日起,已启用新版认证和考试,包括题库都会更新,由于疫情原因,请关注官网和本地考点信息。题库网络上很容易下载到。

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

Ubuntu18.04安装教程

Ubuntu18.04.1安装一、准备工作1.下载Ubuntu18.04.1 LTS2.制作U盘启动盘3.准备 Ubuntu18.04.1 的硬盘空间二、安装Ubuntu18.04.1三、安装后的一些工作1.安装输入法2.更换软件源四、双系统如何卸载Ubuntu18.04.1新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列...

快速排序---(面试碰到过好几次)

原理:    快速排序,说白了就是给基准数据找其正确索引位置的过程.    如下图所示,假设最开始的基准数据为数组第一个元素23,则首先用一个临时变量去存储基准数据,即tmp=23;然后分别从数组的两端扫描数组,设两个指示标志:low指向起始位置,high指向末尾.    首先从后半部分开始,如果扫描到的值大于基准数据就让high减1,如果发现有元素比该基准数据的值小(如上图中18&amp;lt...

手把手实现Java图书管理系统(附源码)

【超实用课程内容】 本课程演示的是一套基于Java的SSM框架实现的图书管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的java人群。详细介绍了图书管理系统的实现,包括:环境搭建、系统业务、技术实现、项目运行、功能演示、系统扩展等,以通俗易懂的方式,手把手的带你从零开始运行本套图书管理系统,该项目附带全部源码可作为毕设使用。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27513 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/27513,点击右下方课程资料、代码、课件等打包下载

HTML期末大作业

这是我自己做的HTML期末大作业,花了很多时间,稍加修改就可以作为自己的作业了,而且也可以作为学习参考

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

极简JAVA学习营第四期(报名以后加助教微信:eduxy-1)

想学好JAVA必须要报两万的培训班吗? Java大神勿入 如果你: 零基础想学JAVA却不知道从何入手 看了一堆书和视频却还是连JAVA的环境都搭建不起来 囊中羞涩面对两万起的JAVA培训班不忍直视 在职没有每天大块的时间专门学习JAVA 那么恭喜你找到组织了,在这里有: 1. 一群志同道合立志学好JAVA的同学一起学习讨论JAVA 2. 灵活机动的学习时间完成特定学习任务+每日编程实战练习 3. 热心助人的助教和讲师及时帮你解决问题,不按时完成作业小心助教老师的家访哦 上一张图看看前辈的感悟: &nbsp; &nbsp; 大家一定迫不及待想知道什么是极简JAVA学习营了吧,下面就来给大家说道说道: 什么是极简JAVA学习营? 1. 针对Java小白或者初级Java学习者; 2. 利用9天时间,每天1个小时时间; 3.通过 每日作业 / 组队PK / 助教答疑 / 实战编程 / 项目答辩 / 社群讨论 / 趣味知识抢答等方式让学员爱上学习编程 , 最终实现能独立开发一个基于控制台的‘库存管理系统’ 的学习模式 极简JAVA学习营是怎么学习的? &nbsp; 如何报名? 只要购买了极简JAVA一:JAVA入门就算报名成功! &nbsp;本期为第四期极简JAVA学习营,我们来看看往期学员的学习状态: 作业看这里~ &nbsp; 助教的作业报告是不是很专业 不交作业打屁屁 助教答疑是不是很用心 &nbsp; 有奖抢答大家玩的很嗨啊 &nbsp; &nbsp; 项目答辩终于开始啦 &nbsp; 优秀者的获奖感言 &nbsp; 这是答辩项目的效果 &nbsp; &nbsp; 这么细致的服务,这么好的氛围,这样的学习效果,需要多少钱呢? 不要1999,不要199,不要99,只要9.9 是的你没听错,只要9.9以上所有就都属于你了 如果你: 1、&nbsp;想学JAVA没有基础 2、&nbsp;想学JAVA没有整块的时间 3、&nbsp;想学JAVA没有足够的预算 还等什么?赶紧报名吧,抓紧抢位,本期只招300人,错过只有等时间待定的下一期了 &nbsp; 报名请加小助手微信:eduxy-1 &nbsp; &nbsp;

C++语言基础视频教程

C++语言基础视频培训课程:本课与主讲者在大学开出的程序设计课程直接对接,准确把握知识点,注重教学视频与实践体系的结合,帮助初学者有效学习。本教程详细介绍C++语言中的封装、数据隐藏、继承、多态的实现等入门知识;主要包括类的声明、对象定义、构造函数和析构函数、运算符重载、继承和派生、多态性实现等。 课程需要有C语言程序设计的基础(可以利用本人开出的《C语言与程序设计》系列课学习)。学习者能够通过实践的方式,学会利用C++语言解决问题,具备进一步学习利用C++开发应用程序的基础。

UnityLicence

UnityLicence

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

YOLOv3目标检测实战:训练自己的数据集

YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。 本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。 除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:交通标志识别》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 敬请关注并选择学习!

Python数据分析师-实战系列

系列课程主要包括Python数据分析必备工具包,数据分析案例实战,核心算法实战与企业级数据分析与建模解决方案实战,建议大家按照系列课程阶段顺序进行学习。所有数据集均为企业收集的真实数据集,整体风格以实战为导向,通俗讲解Python数据分析核心技巧与实战解决方案。

YOLOv3目标检测实战系列课程

《YOLOv3目标检测实战系列课程》旨在帮助大家掌握YOLOv3目标检测的训练、原理、源码与网络模型改进方法。 本课程的YOLOv3使用原作darknet(c语言编写),在Ubuntu系统上做项目演示。 本系列课程包括三门课: (1)《YOLOv3目标检测实战:训练自己的数据集》 包括:安装darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 (2)《YOLOv3目标检测:原理与源码解析》讲解YOLOv1、YOLOv2、YOLOv3的原理、程序流程并解析各层的源码。 (3)《YOLOv3目标检测:网络模型改进方法》讲解YOLOv3的改进方法,包括改进1:不显示指定类别目标的方法 (增加功能) ;改进2:合并BN层到卷积层 (加快推理速度) ; 改进3:使用GIoU指标和损失函数 (提高检测精度) ;改进4:tiny YOLOv3 (简化网络模型)并介绍 AlexeyAB/darknet项目。

超详细MySQL安装及基本使用教程

一、下载MySQL 首先,去数据库的官网http://www.mysql.com下载MySQL。 点击进入后的首页如下:  然后点击downloads,community,选择MySQL Community Server。如下图:  滑到下面,找到Recommended Download,然后点击go to download page。如下图:  点击download进入下载页面选择No...

一学即懂的计算机视觉(第一季)

图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。 【超实用课程内容】 课程内容分为三篇,包括视觉系统构成,图像处理基础,特征提取与描述,运动跟踪,位姿估计,三维重构等内容。课程理论与实战结合,注重教学内容的可视化和工程实践,为人工智能视觉研发及算法工程师等相关高薪职位就业打下坚实基础。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/26281 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,但是大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/26281,点击右下方课程资料、代码、课件等打包下载

董付国老师Python全栈学习优惠套餐

购买套餐的朋友可以关注微信公众号“Python小屋”,上传付款截图,然后领取董老师任意图书1本。

爬取妹子图片(简单入门)

安装第三方请求库 requests 被网站禁止了访问 原因是我们是Python过来的 重新给一段 可能还是存在用不了,使用网页的 编写代码 上面注意看匹配内容 User-Agent:请求对象 AppleWebKit:请求内核 Chrome浏览器 //请求网页 import requests import re //正则表达式 就是去不规则的网页里面提取有规律的信息 headers = { 'User-Agent':'存放浏览器里面的' } response = requests.get

web网页制作期末大作业

分享思维,改变世界. web网页制作,期末大作业. 所用技术:html css javascript 分享所学所得

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

Spring Boot -01- 快速入门篇(图文教程)

Spring Boot -01- 快速入门篇 今天开始不断整理 Spring Boot 2.0 版本学习笔记,大家可以在博客看到我的笔记,然后大家想看视频课程也可以到【慕课网】手机 app,去找【Spring Boot 2.0 深度实践】的课程,令人开心的是,课程完全免费! 什么是 Spring Boot? Spring Boot 是由 Pivotal 团队提供的全新框架。Spring Boot...

立方体线框模型透视投影 (计算机图形学实验)

计算机图形学实验 立方体线框模型透视投影 的可执行文件,亲测可运行,若需报告可以联系我,期待和各位交流

Python数据清洗实战入门

本次课程主要以真实的电商数据为基础,通过Python详细的介绍了数据分析中的数据清洗阶段各种技巧和方法。

软件测试入门、SQL、性能测试、测试管理工具

软件测试2小时入门,让您快速了解软件测试基本知识,有系统的了解; SQL一小时,让您快速理解和掌握SQL基本语法 jmeter性能测试 ,让您快速了解主流来源性能测试工具jmeter 测试管理工具-禅道,让您快速学会禅道的使用,学会测试项目、用例、缺陷的管理、

相关热词 c#跨线程停止timer c#批量写入sql数据库 c# 自动安装浏览器 c#语言基础考试题 c# 偏移量打印是什么 c# 绘制曲线图 c#框体中的退出函数 c# 按钮透明背景 c# idl 混编出错 c#在位置0处没有任何行
立即提问