Polygon智能合约 2020-12-11 11:06 采纳率: 0%
浏览 146

求个循环!请问如何用pandas将多列合并为单列

 

如题,请问如何将表1 转换为表2?
              cond1 cond2 cond3
emp1        84       74       27
emp2        94        6         31 

  (表1)


Employee Condition         Score
Emp1           Cond1                 84
Emp1           Cond2                 74
Emp1           Cond3                 27
Emp2           Cond1                 94
Emp2           Cond2                 6
Emp2           Cond3                 31

       (表2)
求大佬代码~~感激不尽!
  • 写回答

1条回答 默认 最新

  • 海晨威 领域专家: 数据科学与机器学习技术领域 2020-12-12 16:05
    关注

    这个需求人看起来不难,但并不好实现,用for循环难免效率太低,下面代码中逐步去生成每一列:

    import pandas as pd
    from itertools import chain
    
    df1 = pd.DataFrame({"cond1":[84,94], "cond2":[74,6], "cond3":[27,31]}, index=["emp1", "emp2"])
    df1_line_num = len(df1)
    
    # 获取行列索引
    df1_index = df1.index.tolist()
    df1_columns = df1.columns.tolist()
    
    # 构造 Employee 列
    Employee = [[item] * len(df1_columns) for item in df1_index]
    Employee = list(chain(*Employee))   # 先生成再拍平
    
    # 构造 Condition 列
    Condition = df1_columns * len(df1_index)
    
    # 构造 Score 列
    Score = df1.values.reshape((-1,)).tolist()
    
    # 生成表2,并大写首字母
    df2 = pd.DataFrame({"Employee": Employee, "Condition":Condition, "Score":Score})
    df2["Employee"] = df2["Employee"].map(lambda x: x[0].upper()+x[1:])
    df2["Condition"] = df2["Condition"].map(lambda x: x[0].upper()+x[1:])
    
    print(df2)

    如果有更好的实现欢迎交流哦,希望能帮到你 ^_^

    评论

报告相同问题?