需求 : 使用 Python+opencv实现视频中的物体识别,
细节描述 : 用电子设备录制视屏, 对此视频进行识别,里面可能任何物品。

使用 Python+opencv实现视频中的物体识别
- 写回答
- 好问题 0 提建议
- 关注问题
- 邀请回答
-
1条回答 默认 最新
- 「已注销」 2021-09-09 00:41关注
#!/user/bin/env python3 # -*- coding: utf-8 -*- import cv2 # 深度学习-图像识别 def getContuors(img): contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: area = cv2.contourArea(cnt) # print(area) if area > 500: cv2.drawContours(imgContour, cnt, -1, (0, 0, 0), 1) peri = cv2.arcLength(cnt, True) # 轮廓长度 approx = cv2.approxPolyDP(cnt, 0.02 * peri, True) objCor = len(approx) # print(objCor) x, y, w, h = cv2.boundingRect(approx) if objCor == 3: objectType = 'Tri' elif objCor == 4: aspRatio = w / float(h) # print(aspRatio) if aspRatio > 0.95 and aspRatio < 1.05: objectType = 'ZFX' else: objectType = 'CFX' elif objCor > 4: objectType = 'YX' else: objectType = 'NONE' cv2.rectangle(imgContour, (x, y), (x + w, y + h), (255, 0, 0), 1) cv2.putText(imgContour, objectType, (x + (w // 2) - 10, y + (h // 5) - 10), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 2) img = cv2.imread('ss.png') imgsize = cv2.resize(img, (500, 400)) # 裁剪后 imgContour = imgsize.copy() imgGRAY = cv2.cvtColor(imgsize, cv2.COLOR_BGR2GRAY) imgBlur = cv2.GaussianBlur(imgGRAY, (7, 7), 1) # 模糊度 imgCann = cv2.Canny(imgBlur, 50, 50) getContuors(imgCann) if __name__ == '__main__': cv2.imshow('windows', imgCann) cv2.imshow('window', imgContour) cv2.waitKey(0)
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决评论 打赏 举报无用 1