Problem Description
John never knew he had a grand-uncle, until he received the notary’s letter. He learned that his late grand-uncle had gathered a lot of money, somewhere in South-America, and that John was the only inheritor.

John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him.

This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated.

Assume the following bonds are available:
Value Annual interest
4000 400
3000 250

With a capital of 10 000 one could buy two bonds of 4 000, giving a yearly interest of 800. Buying two bonds of 3 000, and one of 4 000 is a better idea, as it gives a yearly interest of 900. After two years the capital has grown to 11 800 , and it makes sense to sell a 3 000 one and buy a 4 000 one, so the annual interest grows to 1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is 12 850, which allows for three times 4 000, giving a yearly interest of 1 200.

Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.

Input
The first line contains a single positive integer N which is the number of test cases. The test cases follow.

The first line of a test case contains two positive integers: the amount to start with (at most 1 000 000), and the number of years the capital may grow (at most 40).

The following line contains a single number: the number d (1 <= d <= 10) of available bonds.

The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of \$1 000. The interest of a bond is never more than 10% of its value.

Output
For each test case, output – on a separate line – the capital at the end of the period, after an optimal schedule of buying and selling.

Sample Input
1
10000 4
2
4000 400
3000 250

Sample Output
14050

C语言是一种通用的程序设计语言,它包含了紧凑的表达式、丰富的运算符集合、现代控制流以及数据结构等四个部分.C语言功能丰富,表达能力强,使用起来灵活方便;它应用面广,可移植性强,同时具有高级语言和低级语言的优点,因此,在工程计算及应用程序开发中得到了广泛的应用.众所周知,对于C语言的初学者来说,最佳途径是编写程序,本文通过对一个典型实例的分析和讲解,来帮助读者掌握这门语言.

Problem Description There is an undirected graph G with n vertices and m edges. Every time, you can select several edges and delete them. The edges selected must meet the following condition: let G′ be graph induced from these edges, then every connected component of G′ has at most one cycle. What is the minimum number of deletion needed in order to delete all the edges. Input There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case: The first line contains two integers n and m (1≤n≤2000,0≤m≤2000) -- the number of vertices and the number of edges. For the next m lines, each line contains two integers ui and vi, which means there is an undirected edge between ui and vi (1≤ui,vi≤n,ui≠vi). The sum of values of n in all test cases doesn't exceed 2⋅104. The sum of values of m in all test cases doesn't exceed 2⋅104. Output For each test case, output the minimum number of deletion needed.

#includernint main(void)rn rn int i,n,odd,square; rn printf("输入数字n");rn scanf("%d",&n); rn i=1; rn odd=3; rn for (square=1;i<=n;odd+=2) rn printf("%10d%10d\n",i,square);rn ++i;rn square+=odd;rn rn return 0;rnrnrn假设n=5，我编译之后结果是rn 1 1rn 2 4rn 3 9rn 4 16rn 5 25rn我不明白的是: 运算前odd已经被赋予3了 再加上odd+=2 那么这时候odd的值应该是5啊. rn还有和square相加后因该是6啊.rn为什么会出现4,9,16,25的结果呢rn请详细说一下 运算中的转换过程!!!
c语言趣味性题目程序编写

C语言编写的加减乘除运算
C语言编写的加减乘除运算

c语言实现的大整数数运算程序
c语言实现的大整数相加，已通过相当严格的测试，保证正确，请注明cherry
【NOI2006】BZOJ1497最大获利
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MB Submit: 3723 Solved: 1808 Description 新的技术正冲击着手机通讯市场，对于各大运营商来说，这既是机遇，更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜，需要做太多的准备工作，仅就站址选择一项，就需要完成前期市场研究、站
[NOI2006]最大获利

BZOJ 1497: [NOI2006]最大获利( 最大流 )

NOI2006 最大获利(网络流)

[NOI2006最大获利]

[NOI2006] 最大获利

【JZOJ2224】【NOI2006】最大获利

【bzoj 1497】最大获利

【bzoj1497】NOI2006最大获利

BZOJ 1497, 最大获利

NOI2006 最大获利

【NOI2006】最大获利 网络流

COGS28 [NOI2006] 最大获利[最大权闭合子图]
[NOI2006] 最大获利 ★★★☆ 输入文件：profit.in 输出文件：profit.out简单对比时间限制：2 s 内存限制：512 MB 【问题描述】 新的技术正冲击着手机通讯市场，对于各大运营商来说，这既是机遇，更是挑战。THU 集团旗下的CS&amp;T 通讯公司在新一代通讯技术血战的前夜，需要做太多的准备工作，仅就站址选择一项，就需要完成前...
C语言& ~运算和&运算

[JZOJ2224] 【NOI2006】最大获利
Description 新的技术正冲击着手机通讯市场，对于各大运营商来说，这既是机遇，更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜，需要做太多的准备工作，仅就站址选择一项，就需要完成前期市场研究、站址勘测、最优化等项目。 　　在前期市场调查和站址勘测之后，公司得到了一共N个可以作为通讯信号中转站的地址，而由于这些地址的地理位置差异，在不同的地方建造通讯中转站需要投入
【BZOJ1497】【NOI2006】最大获利
【题目链接】 点击打开链接 【思路要点】 直接解最大权闭合子图问题即可。时间复杂度$$O(Dinic(N+M,N+3*M))$$。 【代码】 #include using namespace std; const int MAXP = 60005; const int INF = 1e9; template void read(T &
NOI2006最大获利

BZOJ1479 最大获利

[bzoj1497][网络流]最大获利
Description 新的技术正冲击着手机通讯市场，对于各大运营商来说，这既是机遇，更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜，需要做太多的准备工作，仅就站址选择一项，就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后，公司得到了一共N个可以作为通讯信号中转站的地址，而由于这些地址的地理位置差异，在不同的地方建造通讯中转站需要投入的成本也是不
C语言编写 计算日期

unix .c 程序里如何才能实现500秒的超时过程？
unix .c 程序里如何才能实现500秒的超时过程 多谢了!各位那位实现过，求助!
C语言如何实现积分运算

C语言长整数运算的实现

c语言实现计算黑色星期五的程序

c语言怎么去学习

C语言实现：最大的子序列和