56kb 2022-04-13 23:57 采纳率: 100%
浏览 96
已结题

ROC曲线画出来混乱线

问题遇到的现象和发生背景

今天在做建模分析的时候,用到随机森林处理多分类问题,最后画出的ROC曲线很奇怪,想知道这是什么原因造成的。

问题相关代码
import numpy as np
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.metrics import classification_report,roc_auc_score

pred_y_quant = rf.predict_proba(Xtest)
con = multilabel_confusion_matrix(Ytest,rf.predict(Xtest),labels=[1.0,2.0,3.0,4.0,5.0])
print(classification_report(Ytest,rf.predict(Xtest),labels=[1.0,2.0,3.0,4.0,5.0]))
# macro avg       0.52      0.40      0.42      4646 weighted avg       0.71      0.72      0.70      4646
#AUC
AUC = roc_auc_score(np.array(Ytest),np.array(pred_y_quant),multi_class='ovo')
print('AUC:',auc)
pred_y_score = []
for i in pred_y_quant:
    pred_y_score.append(max(i))
#ROC
plt.figure()
lw = 2
plt.plot(np.array(Ytest),np.array(pred_y_score),color='darkorange',
         lw=lw,label = 'randomforest')
plt.plot(color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 5.0])
#plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
运行结果及报错内容

img

我想要达到的结果

画出正确的ROC曲线

  • 写回答

2条回答 默认 最新

  • cndrip 2022-04-14 19:05
    关注

    我感觉你写得不对,以下代码供你参考

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as  plt
    from sklearn.metrics import multilabel_confusion_matrix
    from sklearn.metrics import classification_report,roc_auc_score
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.datasets import make_blobs
    
    from sklearn import svm
    
    #使用最初的X和y,样本不均衡的这个模型
    class_1 = 500 #类别1有500个样本
    class_2 = 50 #类别2只有50个
    centers = [[0.0, 0.0], [2.0, 2.0]] #设定两个类别的中心
    clusters_std = [1.5, 0.5] #设定两个类别的方差,通常来说,样本量比较大的类别会更加松散
    X, y = make_blobs(n_samples=[class_1, class_2],
                      centers=centers,
                      cluster_std=clusters_std,
                      random_state=0, shuffle=False)
    
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap="rainbow",s=10)
    
    
    clf_proba = RandomForestClassifier(n_estimators = 8).fit(X,y)
    y_predict = clf_proba.predict(X)
    ypredict = clf_proba.predict_proba(X)
    
    from sklearn.metrics import roc_curve
    FPR, recall, thresholds = roc_curve(y,ypredict[:,1], pos_label=1)
    
    
    from sklearn.metrics import roc_auc_score as AUC
    area = AUC(y,ypredict[:,1])
    print(area)
    
    from sklearn.metrics import confusion_matrix
    cm= confusion_matrix(y, y_predict)
    print(cm)
    
    plt.figure()
    plt.plot(FPR, recall, color='red',
             label='ROC curve (area = %0.4f)' % area)
    plt.plot([0, 1], [0, 1], color='black', linestyle='--')
    plt.xlim([-0.05, 1.05])
    plt.ylim([-0.05, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('Recall')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
    plt.show()
    
    
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

问题事件

  • 系统已结题 4月25日
  • 已采纳回答 4月17日
  • 创建了问题 4月13日

悬赏问题

  • ¥30 dbLinq最新版linq sqlite
  • ¥20 对D盘进行分盘之前没有将visual studio2022卸载掉,现在该如何下载回来
  • ¥15 完成虚拟机环境配置,还有安装kettle
  • ¥15 2024年全国大学生数据分析大赛A题:直播带货与电商产品的大数据分析 问题5. 请设计一份优惠券的投放策略,需要考虑优惠券的数量、优惠券的金额、投放时间段和投放商品种类等因素。求具体的python代码
  • ¥15 有人会搭建生鲜配送自营+平台的管理系统吗
  • ¥15 用matlab写代码
  • ¥30 motoradmin系统的多对多配置
  • ¥15 求组态王串口自定义通信配置方法或代码?
  • ¥15 实验 :UML2.0 结构建模
  • ¥20 用vivado写数字逻辑实验报告撰写,FPGA实验