Gray_shu 2022-04-25 11:28 采纳率: 100%
浏览 3004
已结题

TypeError: add_argument() takes 2 positional arguments but 3 were given 这个报错怎么解决

利用unet tensorflow深度学习
代码如下

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import io
from keras.layers.core import Dropout
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers import Input
from keras.models import Model
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping, ModelCheckpoint


def standardize(img):
    mean = np.mean(img, axis=0)
    std = np.std(img, axis=0)
    return (img - mean) / std


# Get training and validation paths
def get_train_val_paths(img_folder, mask_folder, split_ratio=0.8):
    img_names = os.listdir(img_folder)
    print("total images: ", len(img_names))
    mask_names = os.listdir(mask_folder)
    img_paths = [os.path.join(img_folder, name) for name in img_names]
    mask_paths = [os.path.join(mask_folder, name) for name in mask_names]
    no_samples = len(img_paths)
    no_train = int(np.ceil(split_ratio * no_samples))
    train_paths = {name: paths_list for name, paths_list in zip(["train_imgs", "train_mask"],
                                                                [img_paths[:no_train], mask_paths[:no_train]])}
    val_paths = {name: paths_list for name, paths_list in zip(["val_imgs", "val_mask"],
                                                              [img_paths[no_train:], mask_paths[no_train:]])}
    return train_paths, val_paths


# Data generator to get single image and mask
def image_generator(img_paths, mask_paths):

    for img_path, mask_path in zip(img_paths, mask_paths):
        img = io.imread(img_path)
        img = standardize(img)
        img = np.expand_dims(img, axis=2)
        mask = io.imread(mask_path) / 255.
        mask = np.expand_dims(mask, axis=2)
        yield img, mask


# Batch data generator
def img_batch_generator(img_paths, mask_paths, batch_size):

    while True:
        img_gen = image_generator(img_paths, mask_paths)

        img_batch, mask_batch = [], []
        for img, mask in img_gen:
            img_batch.append(img)
            mask_batch.append(mask)
            if len(img_batch) == batch_size:
                yield np.stack(img_batch, axis=0), np.stack(mask_batch, axis=0)
                img_batch, mask_batch = [], []
        if len(img_batch) != 0:
            yield np.stack(img_batch, axis=0), np.stack(mask_batch, axis=0)


image_folder = "C:/Users/11962/Desktop/images1/"
masks_folder = "C:/Users/11962/Desktop/masks1/"
tr_paths, v_paths = get_train_val_paths(image_folder, masks_folder)

inputs = Input((512, 512, 1))

c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(inputs)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)

c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)

c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)

c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c4)
p4 = MaxPooling2D(pool_size=(2, 2))(c4)

c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c5)

u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c6)

u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c7)

u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c8)

u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c9)

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)

model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
print(model.summary())
batch_size = 2


train_gen = img_batch_generator(tr_paths["train_imgs"], tr_paths["train_mask"], batch_size)
val_gen = img_batch_generator(v_paths["val_imgs"], v_paths["val_mask"], batch_size)


train_steps = len(tr_paths["train_imgs"]) // batch_size
val_steps = len(v_paths["val_imgs"]) // batch_size

early_stop = EarlyStopping(patience=10, verbose=1)
checkpoint = ModelCheckpoint("./model/keras_unet_model.h5", verbose=1, save_best_only=True)
    
history = model.fit(train_gen, steps_per_epoch=train_steps,
                              epochs=30,
                              validation_data=val_gen,
                              validation_steps=val_steps,
                              verbose=1,
                              max_queue_size=4,
                              callbacks=[early_stop, checkpoint])

loss = history.history["loss"]
val_loss = history.history["val_loss"]
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, color="red", label="training loss")
plt.plot(epochs, val_loss, color="blue", label="validation loss")
plt.title("Training and Validation Loss")
plt.legend()

plt.figure()
plt.plot(epochs, acc, color="red", label="training acc")
plt.plot(epochs, val_acc, color="blue", label="validation acc")
plt.title("Training and Validation acc")
plt.legend()


报错:TypeError: add_argument() takes 2 positional arguments but 3 were given

应该怎么修改,急

  • 写回答

3条回答 默认 最新

  • 不会长胖的斜杠 后端领域新星创作者 2022-04-25 11:33
    关注

    报错的具体信息贴出来看看,add_argument()这个函数看看形参,错误是因为你多传了一个参数进去了

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论 编辑记录
查看更多回答(2条)

报告相同问题?

问题事件

  • 系统已结题 5月3日
  • 已采纳回答 4月25日
  • 创建了问题 4月25日

悬赏问题

  • ¥15 verilog modelsim仿真
  • ¥15 Power BI 里面 帕累托图突出显示前20
  • ¥50 用预估矫正法,分数阶微分方程组传染病的最优控制代码怎么写
  • ¥15 画个数据流程图,手画也行
  • ¥60 AS自带模拟器AVD Root 和 Xposed安装
  • ¥15 Esp32的microPython设备中main.py文件无法开机自启动
  • ¥30 哪位搞Android的编程师可以帮我远程一下,悬赏30元
  • ¥15 solidity部署上合约,可以mint,也继承接口了,在区块链也不显示代币名字
  • ¥15 讨论 博士论文交互项怎么讨论?
  • ¥50 在集成BiLSTM和GCN模型时遇到了问题