Gray_shu 2022-04-25 11:28 采纳率: 100%
浏览 3189
已结题

TypeError: add_argument() takes 2 positional arguments but 3 were given 这个报错怎么解决

利用unet tensorflow深度学习
代码如下

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import io
from keras.layers.core import Dropout
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers import Input
from keras.models import Model
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping, ModelCheckpoint


def standardize(img):
    mean = np.mean(img, axis=0)
    std = np.std(img, axis=0)
    return (img - mean) / std


# Get training and validation paths
def get_train_val_paths(img_folder, mask_folder, split_ratio=0.8):
    img_names = os.listdir(img_folder)
    print("total images: ", len(img_names))
    mask_names = os.listdir(mask_folder)
    img_paths = [os.path.join(img_folder, name) for name in img_names]
    mask_paths = [os.path.join(mask_folder, name) for name in mask_names]
    no_samples = len(img_paths)
    no_train = int(np.ceil(split_ratio * no_samples))
    train_paths = {name: paths_list for name, paths_list in zip(["train_imgs", "train_mask"],
                                                                [img_paths[:no_train], mask_paths[:no_train]])}
    val_paths = {name: paths_list for name, paths_list in zip(["val_imgs", "val_mask"],
                                                              [img_paths[no_train:], mask_paths[no_train:]])}
    return train_paths, val_paths


# Data generator to get single image and mask
def image_generator(img_paths, mask_paths):

    for img_path, mask_path in zip(img_paths, mask_paths):
        img = io.imread(img_path)
        img = standardize(img)
        img = np.expand_dims(img, axis=2)
        mask = io.imread(mask_path) / 255.
        mask = np.expand_dims(mask, axis=2)
        yield img, mask


# Batch data generator
def img_batch_generator(img_paths, mask_paths, batch_size):

    while True:
        img_gen = image_generator(img_paths, mask_paths)

        img_batch, mask_batch = [], []
        for img, mask in img_gen:
            img_batch.append(img)
            mask_batch.append(mask)
            if len(img_batch) == batch_size:
                yield np.stack(img_batch, axis=0), np.stack(mask_batch, axis=0)
                img_batch, mask_batch = [], []
        if len(img_batch) != 0:
            yield np.stack(img_batch, axis=0), np.stack(mask_batch, axis=0)


image_folder = "C:/Users/11962/Desktop/images1/"
masks_folder = "C:/Users/11962/Desktop/masks1/"
tr_paths, v_paths = get_train_val_paths(image_folder, masks_folder)

inputs = Input((512, 512, 1))

c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(inputs)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)

c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)

c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)

c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c4)
p4 = MaxPooling2D(pool_size=(2, 2))(c4)

c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c5)

u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c6)

u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c7)

u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c8)

u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c9)

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)

model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
print(model.summary())
batch_size = 2


train_gen = img_batch_generator(tr_paths["train_imgs"], tr_paths["train_mask"], batch_size)
val_gen = img_batch_generator(v_paths["val_imgs"], v_paths["val_mask"], batch_size)


train_steps = len(tr_paths["train_imgs"]) // batch_size
val_steps = len(v_paths["val_imgs"]) // batch_size

early_stop = EarlyStopping(patience=10, verbose=1)
checkpoint = ModelCheckpoint("./model/keras_unet_model.h5", verbose=1, save_best_only=True)
    
history = model.fit(train_gen, steps_per_epoch=train_steps,
                              epochs=30,
                              validation_data=val_gen,
                              validation_steps=val_steps,
                              verbose=1,
                              max_queue_size=4,
                              callbacks=[early_stop, checkpoint])

loss = history.history["loss"]
val_loss = history.history["val_loss"]
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, color="red", label="training loss")
plt.plot(epochs, val_loss, color="blue", label="validation loss")
plt.title("Training and Validation Loss")
plt.legend()

plt.figure()
plt.plot(epochs, acc, color="red", label="training acc")
plt.plot(epochs, val_acc, color="blue", label="validation acc")
plt.title("Training and Validation acc")
plt.legend()


报错:TypeError: add_argument() takes 2 positional arguments but 3 were given

应该怎么修改,急

  • 写回答

3条回答 默认 最新

  • 不会长胖的斜杠 后端领域新星创作者 2022-04-25 11:33
    关注

    报错的具体信息贴出来看看,add_argument()这个函数看看形参,错误是因为你多传了一个参数进去了

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论 编辑记录
查看更多回答(2条)

报告相同问题?

问题事件

  • 系统已结题 5月3日
  • 已采纳回答 4月25日
  • 创建了问题 4月25日

悬赏问题

  • ¥15 想用@vueuse 把项目动态改成深色主题,localStorge里面的vueuse-color-scheme一开始就给我改成了dark,不知道什么原因(相关搜索:背景颜色)
  • ¥15 flask实现搜索框访问数据库
  • ¥15 mrk3399刷完安卓11后投屏调试只能显示一个设备
  • ¥20 白日门传奇少一个启动区服和启动服务器的快捷键,东西都是全的 , 他们说套一个出来就行了 但我就是弄不好,谁看看,
  • ¥100 如何用js写一个游戏云存档
  • ¥15 ansys fluent计算闪退
  • ¥15 有关wireshark抓包的问题
  • ¥15 需要写计算过程,不要写代码,求解答,数据都在图上
  • ¥15 向数据表用newid方式插入GUID问题
  • ¥15 multisim电路设计