Gray_shu 2022-04-25 11:28 采纳率: 100%
浏览 3112
已结题

TypeError: add_argument() takes 2 positional arguments but 3 were given 这个报错怎么解决

利用unet tensorflow深度学习
代码如下

import os
import numpy as np
import matplotlib.pyplot as plt
from skimage import io
from keras.layers.core import Dropout
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers import Input
from keras.models import Model
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping, ModelCheckpoint


def standardize(img):
    mean = np.mean(img, axis=0)
    std = np.std(img, axis=0)
    return (img - mean) / std


# Get training and validation paths
def get_train_val_paths(img_folder, mask_folder, split_ratio=0.8):
    img_names = os.listdir(img_folder)
    print("total images: ", len(img_names))
    mask_names = os.listdir(mask_folder)
    img_paths = [os.path.join(img_folder, name) for name in img_names]
    mask_paths = [os.path.join(mask_folder, name) for name in mask_names]
    no_samples = len(img_paths)
    no_train = int(np.ceil(split_ratio * no_samples))
    train_paths = {name: paths_list for name, paths_list in zip(["train_imgs", "train_mask"],
                                                                [img_paths[:no_train], mask_paths[:no_train]])}
    val_paths = {name: paths_list for name, paths_list in zip(["val_imgs", "val_mask"],
                                                              [img_paths[no_train:], mask_paths[no_train:]])}
    return train_paths, val_paths


# Data generator to get single image and mask
def image_generator(img_paths, mask_paths):

    for img_path, mask_path in zip(img_paths, mask_paths):
        img = io.imread(img_path)
        img = standardize(img)
        img = np.expand_dims(img, axis=2)
        mask = io.imread(mask_path) / 255.
        mask = np.expand_dims(mask, axis=2)
        yield img, mask


# Batch data generator
def img_batch_generator(img_paths, mask_paths, batch_size):

    while True:
        img_gen = image_generator(img_paths, mask_paths)

        img_batch, mask_batch = [], []
        for img, mask in img_gen:
            img_batch.append(img)
            mask_batch.append(mask)
            if len(img_batch) == batch_size:
                yield np.stack(img_batch, axis=0), np.stack(mask_batch, axis=0)
                img_batch, mask_batch = [], []
        if len(img_batch) != 0:
            yield np.stack(img_batch, axis=0), np.stack(mask_batch, axis=0)


image_folder = "C:/Users/11962/Desktop/images1/"
masks_folder = "C:/Users/11962/Desktop/masks1/"
tr_paths, v_paths = get_train_val_paths(image_folder, masks_folder)

inputs = Input((512, 512, 1))

c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(inputs)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)

c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)

c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)

c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c4)
p4 = MaxPooling2D(pool_size=(2, 2))(c4)

c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c5)

u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c6)

u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c7)

u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c8)

u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same')(c9)

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)

model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
print(model.summary())
batch_size = 2


train_gen = img_batch_generator(tr_paths["train_imgs"], tr_paths["train_mask"], batch_size)
val_gen = img_batch_generator(v_paths["val_imgs"], v_paths["val_mask"], batch_size)


train_steps = len(tr_paths["train_imgs"]) // batch_size
val_steps = len(v_paths["val_imgs"]) // batch_size

early_stop = EarlyStopping(patience=10, verbose=1)
checkpoint = ModelCheckpoint("./model/keras_unet_model.h5", verbose=1, save_best_only=True)
    
history = model.fit(train_gen, steps_per_epoch=train_steps,
                              epochs=30,
                              validation_data=val_gen,
                              validation_steps=val_steps,
                              verbose=1,
                              max_queue_size=4,
                              callbacks=[early_stop, checkpoint])

loss = history.history["loss"]
val_loss = history.history["val_loss"]
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, color="red", label="training loss")
plt.plot(epochs, val_loss, color="blue", label="validation loss")
plt.title("Training and Validation Loss")
plt.legend()

plt.figure()
plt.plot(epochs, acc, color="red", label="training acc")
plt.plot(epochs, val_acc, color="blue", label="validation acc")
plt.title("Training and Validation acc")
plt.legend()


报错:TypeError: add_argument() takes 2 positional arguments but 3 were given

应该怎么修改,急

  • 写回答

3条回答 默认 最新

  • 不会长胖的斜杠 后端领域新星创作者 2022-04-25 11:33
    关注

    报错的具体信息贴出来看看,add_argument()这个函数看看形参,错误是因为你多传了一个参数进去了

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论 编辑记录
查看更多回答(2条)

报告相同问题?

问题事件

  • 系统已结题 5月3日
  • 已采纳回答 4月25日
  • 创建了问题 4月25日

悬赏问题

  • ¥20 androidstudio工具问题
  • ¥15 想问一些关于计量的问题
  • ¥15 关于c++外部库文件宏的问题,求解
  • ¥15 office打开卡退(新电脑重装office系统后)
  • ¥300 FLUENT 火箭发动机燃烧EDC仿真
  • ¥15 【Hadoop 问题】Hadoop编译所遇问题hadoop-common: make failed with error code 2
  • ¥15 vb6.0+webbrowser无法加载某个网页求解
  • ¥15 RPA财务机器人采购付款流程
  • ¥15 计算机图形多边形及三次样条曲线绘制
  • ¥15 根据protues画的图用keil写程序