Hoonnn 2023-03-01 17:57 采纳率: 64.3%
浏览 22
已结题

Python的scipy里面用Levenberg–Marquardt

想问一下scipy里面用Levenberg–Marquardt的是scipy.optimize.root(method = lm)吗

  • 写回答

1条回答 默认 最新

  • 社区专家-Monster-XH 2023-03-01 18:00
    关注

    基于Monster 组和GPT的调写:
    不完全正确。scipy.optimize.root 函数支持多种根查找算法,包括 Levenberg–Marquardt 方法,但是它不是特定为 Levenberg–Marquardt 的。实际上,scipy.optimize.least_squares 函数更适合使用 Levenberg–Marquardt 方法来解决非线性最小二乘问题。

    要使用 Levenberg–Marquardt 方法,可以将 method 参数设置为 'lm',并将要最小化的函数传递给 fun 参数。例如,以下代码演示如何使用 Levenberg–Marquardt 方法来拟合一个正弦函数:

    import numpy as np
    from scipy.optimize import least_squares
    
    # Generate some data
    t = np.linspace(0, 10, 100)
    y = np.sin(t) + 0.1 * np.random.randn(len(t))
    
    # Define the function to minimize
    def fun(x, t, y):
        return x[0] * np.sin(x[1] * t + x[2]) - y
    
    # Set initial parameter values
    x0 = [1, 1, 0]
    
    # Use Levenberg–Marquardt method to minimize the function
    res = least_squares(fun, x0, method='lm', args=(t, y))
    
    # Print the optimized parameter values
    print(res.x)
    
    
    
    

    此示例中的 least_squares 函数将使用 Levenberg–Marquardt 方法来找到最小化误差的参数值。如果您的目标是找到根而不是最小二乘解,则应使用 scipy.optimize.root 函数,并将 method 参数设置为支持 Levenberg–Marquardt 方法的选项之一,如 'lm'。

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论

报告相同问题?

问题事件

  • 系统已结题 3月9日
  • 已采纳回答 3月1日
  • 创建了问题 3月1日

悬赏问题

  • ¥50 gki vendor hook
  • ¥15 centos7中sudo命令无法使用
  • ¥15 灰狼算法和蚁群算法如何结合
  • ¥15 这是一个利用ESP32自带按键和LED控制的录像代码,编译过程出现问题,请解决并且指出错误,指导如何处理 ,协助完成代码并上传代码
  • ¥20 stm32f103,hal库 hal_usart_receive函数接收不到数据。
  • ¥20 求结果和代码,sas利用OPTEX程序和D-efficiency生成正交集
  • ¥50 adb连接不到手机是怎么回事?
  • ¥20 抓取数据时发生错误: get_mooncake_data() missing 1 required positional argument: 'driver'的问题,怎么改出正确的爬虫代码?
  • ¥15 vs2022无法联网
  • ¥15 TCP的客户端和服务器的互联