Hoonnn 2023-03-04 12:31 采纳率: 64.3%
浏览 18
已结题

levenberg-marquardt拟合自适应权重

请问python里面实现多参数的levenberg-marquardt拟合,怎么给不同参数!设置自适应权重或者不同步长呢,或者有适用的库吗?

  • 写回答

2条回答 默认 最新

  • CodeBytes 2023-03-04 12:40
    关注

    该回答引用ChatGPT

    在Python中,可以使用SciPy库中的leastsq()或curve_fit()函数来实现Levenberg-Marquardt拟合,其中curve_fit()是基于leastsq()的封装。这些函数都可以处理多个参数的情况,你可以传入多个初始参数值来进行拟合。

    如果你想给不同的参数设置不同的权重或步长,可以在拟合函数中对参数进行相应的调整,比如将某个参数乘以一个权重因子或调整其步长。可以使用scipy.optimize.least_squares()函数,该函数允许指定每个参数的缩放系数,从而实现自适应权重和不同步长。具体方法如下:

    
    from scipy.optimize import least_squares
    
    def func(params, x, y):
        # 定义拟合函数
        a, b, c = params
        return a*x**2 + b*x + c - y
    
    xdata = [1, 2, 3, 4, 5]
    ydata = [1, 4, 9, 16, 25]
    
    params0 = [1, 1, 1]  # 初始参数值
    scale = [1, 10, 100]  # 参数的缩放系数
    
    res = least_squares(func, params0, args=(xdata, ydata), bounds=(0, np.inf), ftol=1e-10, xtol=1e-10, gtol=1e-10, loss='soft_l1', tr_solver='exact', jac='3-point', x_scale=scale)
    
    print(res.x)  # 拟合后的参数值
    
    

    上述代码中,x_scale参数即为每个参数的缩放系数,可以根据需要进行调整。bounds参数用于限制参数的范围,ftol、xtol和gtol参数分别是函数、参数和梯度的收敛容差,loss参数指定损失函数的类型,tr_solver参数指定线性求解器的类型,jac参数指定梯度计算的方法。更多参数的说明可以参考文档。

    除了scipy库之外,还有其他的拟合库可以使用,比如lmfit、emcee和pymc3等。这些库都提供了更加灵活和高级的拟合功能,可以根据需要进行选择。

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)
编辑
预览

报告相同问题?

问题事件

  • 系统已结题 3月12日
  • 已采纳回答 3月5日
  • 创建了问题 3月4日

悬赏问题

  • ¥15 点云密度大则包围盒小
  • ¥15 nginx使用nfs进行服务器的数据共享
  • ¥15 C#i编程中so-ir-192编码的字符集转码UTF8问题
  • ¥15 51嵌入式入门按键小项目
  • ¥30 海外项目,如何降低Google Map接口费用?
  • ¥15 fluentmeshing
  • ¥15 手机/平板的浏览器里如何实现类似荧光笔的效果
  • ¥15 盘古气象大模型调用(python)
  • ¥15 传人记程序做的plc 485从机程序该如何写
  • ¥15 已知手指抓握过程中掌指关节、手指各关节和指尖每一帧的坐标,用贝塞尔曲线可以拟合手指抓握的运动轨迹吗?
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部