CÃlimos 2023-10-16 16:36 采纳率: 64.4%
浏览 4

修改resnet50代码时发现forward函数没用

刚开始改模型,用的是centernet网络(其中主干网络resnet)。其中resnet

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        # 512,512,3 -> 256,256,64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        
        # 256x256x64 -> 128x128x64
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change

        # 128x128x64 -> 128x128x256
        self.layer1 = self._make_layer(block, 64, layers[0])

        # 128x128x256 -> 64x64x512
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)

        # 64x64x512 -> 32x32x1024
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)

        # 32x32x1024 -> 16x16x2048
        self.layer4 = self._make_layer(block, 512, layers[3],stride=2)
   

        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

       
        # 权重初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks,stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                 nn.Conv2d(self.inplanes, planes * block.expansion,
                     kernel_size=1, stride=stride, bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
 

        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)  # 128x128x64 -> 128x128x256

        x1 = self.layer2(x)    # 128x128x256 -> 64x64x512

        x2 = self.layer3(x1) # 64x64x512 -> 32x32x1024

        x3 = self.layer4(x2)# 32x32x1024 -> 16x16x2048


        x = self.avgpool(asff1_x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

我在 def forward(self, x)下面里改来改去,后面才发现这段根本没用上,因为centernet代码里

class CenterNet_Resnet50(nn.Module):
    def __init__(self, num_classes = 20, pretrained = False):
        super(CenterNet_Resnet50, self).__init__()
        #预训练→主干提取特征→解码→检测头
        self.pretrained = pretrained
        # 512,512,3 -> 16,16,2048
        self.backbone = resnet50(pretrained = pretrained)
        # 16,16,2048 -> 128,128,64

        # self.PPM=PPM(2048)
        self.decoder = resnet50_Decoder(2048)
        #-----------------------------------------------------------------#
        #   对获取到的特征进行上采样,进行分类预测和回归预测
        #   128, 128, 64 -> 128, 128, 64 -> 128, 128, num_classes
        #                -> 128, 128, 64 -> 128, 128, 2
        #                -> 128, 128, 64 -> 128, 128, 2
        #-----------------------------------------------------------------#
        self.head = resnet50_Head(channel=64, num_classes=num_classes)
        
        self._init_weights()

    def freeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad = False

    def unfreeze_backbone(self):
        for param in self.backbone.parameters():
            param.requires_grad = True

    def _init_weights(self):
        if not self.pretrained:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
        
        self.head.cls_head[-1].weight.data.fill_(0)
        self.head.cls_head[-1].bias.data.fill_(-2.19)
        
    def forward(self, x):
        feat = self.backbone(x)
 
        return self.head(self.decoder(feat))

里面主干网络调用的是:

def resnet50(pretrained = True):
    model = ResNet(Bottleneck, [3, 4, 6, 3])#第一个参数用的是bottleneck,第二个参数是每层里卷积数量
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls['resnet50'], model_dir = 'model_data/')
        model.load_state_dict(state_dict)
    #----------------------------------------------------------#
    #   获取特征提取部分
    #----------------------------------------------------------#
    features = list([model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2, model.layer3, model.layer4])
    features = nn.Sequential(*features)
    return features

所以如果要修改网络(比如添加注意力什么的模块)只能修改其他地方,那这个def forward这段有什么用呢(把这段去了都能跑),如果要在这里修改的话

  • 写回答

2条回答 默认 最新

  • CSDN-Ada助手 CSDN-AI 官方账号 2023-10-17 07:07
    关注

    【以下回答由 GPT 生成】

    问题分析:

    根据给出的代码,可以看到ResNet类继承了nn.Module,并实现了一个初始化函数和一个_make_layer函数,但是并没有实现forward函数,这就导致了forward函数没有被调用到的问题。

    解决方案:

    为了解决这个问题,需要在ResNet类中添加一个forward函数,并在该函数中实现前向传播的操作。

    以下是修改后的代码:

    class ResNet(nn.Module):
        def __init__(self, block, layers, num_classes=1000):
            self.inplanes = 64
            super(ResNet, self).__init__()
    
            # 输入图像尺寸:512x512x3,输出图像尺寸:256x256x64
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True)
    
            # 256x256x64 -> 128x128x64
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True)
    
            # 128x128x64 -> 128x128x256
            self.layer1 = self._make_layer(block, 64, layers[0])
    
            # 128x128x256 -> 64x64x512
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    
            # 64x64x512 -> 32x32x1024
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    
            # 32x32x1024 -> 16x16x2048
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
    
    
            self.avgpool = nn.AvgPool2d(7)
            self.fc = nn.Linear(512 * block.expansion, num_classes)
    
    
            # 权重初始化
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                     nn.Conv2d(self.inplanes, planes * block.expansion,
                         kernel_size=1, stride=stride, bias=False),
                     nn.BatchNorm2d(planes * block.expansion),
                )
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for _ in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            # 前向传播操作
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
    
            return x
    

    通过添加forward函数,将原来分散在初始化函数和_make_layer函数中的前向传播操作串联起来,这样就可以保证forward函数被调用到了。现在可以使用修改后的ResNet模型进行计算机视觉任务了。


    如果你已经解决了该问题, 非常希望你能够分享一下解决方案, 写成博客, 将相关链接放在评论区, 以帮助更多的人 ^-^
    评论

报告相同问题?

问题事件

  • 创建了问题 10月16日