有没有兄弟可以用python帮我写一份6个字符的包含数字和字母大小写的验证码图片灰度二分化预处理,切割成单个字符,然后用差不多1000组数据自己训练库测试一一比对得到模型的识别代码,⚽️⚽️了
2条回答 默认 最新
关注引自免费微信小程序:皆我百晓生
为了解决你的问题,我将提供以下步骤和代码来完成使用Python进行字符验证码识别。
步骤 1: 准备数据
- 准备一些包含数字和字母大小写的验证码图片。确保图片包含明确的字符和背景,并保存在一个文件夹中。
步骤 2: 图片预处理
- 导入必要的库:
from PIL import Image import numpy as np- 创建一个函数来处理验证码图片。首先加载图片,然后将其转换为灰度图像。接下来,使用二值化将图像转换为黑白图像。最后,返回二值化后的图像。
def preprocess_image(image_path): image = Image.open(image_path).convert('L') binary_image = image.point(lambda x: 0 if x < 128 else 255, '1') return binary_image步骤 3: 字符切割
- 创建一个函数来切割二值化后的验证码图像。通过设置一个阈值,确定字符开始和结束的位置。使用PIL库的crop函数将字符切割成单个字符,并将其保存为单独的图像文件。
def split_characters(image, threshold=128, min_width=6): width, height = image.size pixels = np.array(image.getdata()).reshape((height, width)) in_character = False start = 0 end = 0 for x in range(width): if not in_character and np.mean(pixels[:, x]) < threshold: in_character = True start = x elif in_character and (np.mean(pixels[:, x]) > threshold or x == width - 1): in_character = False if x - start > min_width: end = x + 1 character_image = image.crop((start, 0, end, height)) character_image.save(f"character_{start}.png") return步骤 4: 数据处理与模型训练
- 确保你已经收集了足够的验证码图片,并将其切割成单个字符。
- 创建一个函数来读取切割后的字符图像,并将其转换为特征矩阵用于训练模型。
def process_data(): X = [] y = [] for file in glob.glob("character_*.png"): image = Image.open(file) data = np.array(image.getdata()).reshape((image.height, image.width)) X.append(data.flatten()) y.append(file.split("_")[1][:-4]) return np.array(X), np.array(y)- 使用sklearn库的train_test_split函数将数据划分为训练集和测试集。
from sklearn.model_selection import train_test_split X, y = process_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)- 使用sklearn库的MLPClassifier类创建一个多层感知机模型,并在训练集上训练模型。
from sklearn.neural_network import MLPClassifier model = MLPClassifier(hidden_layer_sizes=(100,), max_iter=200) model.fit(X_train, y_train)- 使用测试集评估模型的性能。
accuracy = model.score(X_test, y_test) print("模型准确率:", accuracy)- 完整代码示例:
from PIL import Image import numpy as np import glob from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier def preprocess_image(image_path): image = Image.open(image_path).convert('L') binary_image = image.point(lambda x: 0 if x < 128 else 255, '1') return binary_image def split_characters(image, threshold=128, min_width=6): width, height = image.size pixels = np.array(image.getdata()).reshape((height, width)) in_character = False start = 0 end = 0 for x in range(width): if not in_character and np.mean(pixels[:, x]) < threshold: in_character = True start = x elif in_character and (np.mean(pixels[:, x]) > threshold or x == width - 1): in_character = False if x - start > min_width: end = x + 1 character_image = image.crop((start, 0, end, height)) character_image.save(f"character_{start}.png") return def process_data(): X = [] y = [] for file in glob.glob("character_*.png"): image = Image.open(file) data = np.array(image.getdata()).reshape((image.height, image.width)) X.append(data.flatten()) y.append(file.split("_")[1][:-4]) return np.array(X), np.array(y) def train_model(): X, y = process_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = MLPClassifier(hidden_layer_sizes=(100,), max_iter=200) model.fit(X_train, y_train) accuracy = model.score(X_test, y_test) print("模型准确率:", accuracy) if __name__ == "__main__": # 图片预处理和字符切割 image_path = "验证码图片.png" binary_image = preprocess_image(image_path) split_characters(binary_image) # 数据处理和模型训练 train_model()希望这些步骤和代码能够帮助你解决问题。如果需要更多帮助,请随时提问!
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报