A西城秀树 2024-02-22 16:13 采纳率: 0%
浏览 230
已结题

onnx转rknn后出现多个框

#场景复现
在使用yolov5框架完成 训练 -> 验证 ->转换onnx 步骤后,转入到虚拟机进行rknn格式转换,在使用官方的test.py转换后出现多个框,但是他们的中心都位于实际结果的点的水平线上。
#问题总结
1.出现多个框
2.框的大小不对
#问题图片

img

test.py源码如下


```python
import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN

# Model from https://github.com/airockchip/rknn_model_zoo
ONNX_MODEL = 'hmx.onnx'
RKNN_MODEL = 'hmx.rknn'
IMG_PATH = './hmx1.jpg'
DATASET = './dataset.txt'

QUANTIZE_ON = True

OBJ_THRESH = 0.50
NMS_THRESH = 0.45
IMG_SIZE = 640

CLASSES = ("hmx")



def xywh2xyxy(x):
    # Convert [x, y, w, h] to [x1, y1, x2, y2]
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def process(input, mask, anchors):

    anchors = [anchors[i] for i in mask]
    grid_h, grid_w = map(int, input.shape[0:2])

    box_confidence = input[..., 4]
    box_confidence = np.expand_dims(box_confidence, axis=-1)

    box_class_probs = input[..., 5:]

    box_xy = input[..., :2]*2 - 0.5

    col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
    row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
    col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    grid = np.concatenate((col, row), axis=-1)
    box_xy += grid
    box_xy *= int(IMG_SIZE/grid_h)

    box_wh = pow(input[..., 2:4]*2, 2)
    box_wh = box_wh * anchors

    box = np.concatenate((box_xy, box_wh), axis=-1)

    return box, box_confidence, box_class_probs


def filter_boxes(boxes, box_confidences, box_class_probs):
    """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!

    # Arguments
        boxes: ndarray, boxes of objects.
        box_confidences: ndarray, confidences of objects.
        box_class_probs: ndarray, class_probs of objects.

    # Returns
        boxes: ndarray, filtered boxes.
        classes: ndarray, classes for boxes.
        scores: ndarray, scores for boxes.
    """
    boxes = boxes.reshape(-1, 4)
    box_confidences = box_confidences.reshape(-1)
    box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])

    _box_pos = np.where(box_confidences >= OBJ_THRESH)
    boxes = boxes[_box_pos]
    box_confidences = box_confidences[_box_pos]
    box_class_probs = box_class_probs[_box_pos]

    class_max_score = np.max(box_class_probs, axis=-1)
    classes = np.argmax(box_class_probs, axis=-1)
    _class_pos = np.where(class_max_score >= OBJ_THRESH)

    boxes = boxes[_class_pos]
    classes = classes[_class_pos]
    scores = (class_max_score* box_confidences)[_class_pos]

    return boxes, classes, scores


def nms_boxes(boxes, scores):
    """Suppress non-maximal boxes.

    # Arguments
        boxes: ndarray, boxes of objects.
        scores: ndarray, scores of objects.

    # Returns
        keep: ndarray, index of effective boxes.
    """
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]

    areas = w * h
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])

        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1

        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep


def yolov5_post_process(input_data):
    masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
               [59, 119], [116, 90], [156, 198], [373, 326]]

    boxes, classes, scores = [], [], []
    for input, mask in zip(input_data, masks):
        b, c, s = process(input, mask, anchors)
        b, c, s = filter_boxes(b, c, s)
        boxes.append(b)
        classes.append(c)
        scores.append(s)

    boxes = np.concatenate(boxes)
    boxes = xywh2xyxy(boxes)
    classes = np.concatenate(classes)
    scores = np.concatenate(scores)

    nboxes, nclasses, nscores = [], [], []
    for c in set(classes):
        inds = np.where(classes == c)
        b = boxes[inds]
        c = classes[inds]
        s = scores[inds]

        keep = nms_boxes(b, s)

        nboxes.append(b[keep])
        nclasses.append(c[keep])
        nscores.append(s[keep])

    if not nclasses and not nscores:
        return None, None, None

    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)

    return boxes, classes, scores


def draw(image, boxes, scores, classes):
    """Draw the boxes on the image.

    # Argument:
        image: original image.
        boxes: ndarray, boxes of objects.
        classes: ndarray, classes of objects.
        scores: ndarray, scores of objects.
        all_classes: all classes name.
    """
    print("{:^12} {:^12}  {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))
    print('-' * 50)
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        top = int(top)
        left = int(left)
        right = int(right)
        bottom = int(bottom)

        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left - 6),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)

        print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[cl], score, top, left, right, bottom))

def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)


if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> Config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3566')
    print('done')

    # Load ONNX model
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export RKNN model
    print('--> Export rknn model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    # Set inputs
    img = cv2.imread(IMG_PATH)
    # img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

    # Inference
    print('--> Running model')
    img2 = np.expand_dims(img, 0)
    outputs = rknn.inference(inputs=[img2], data_format=['nhwc'])
    np.save('./onnx_yolov5_0.npy', outputs[0])
    np.save('./onnx_yolov5_1.npy', outputs[1])
    np.save('./onnx_yolov5_2.npy', outputs[2])
    print('done')

    # post process
    input0_data = outputs[0]
    input1_data = outputs[1]
    input2_data = outputs[2]

    input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
    input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
    input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))

    input_data = list()
    input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
    input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))

    boxes, classes, scores = yolov5_post_process(input_data)

    img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    if boxes is not None:
        draw(img_1, boxes, scores, classes)
        cv2.imwrite('result.jpg', img_1)
        print('Save results to result.jpg!')

    rknn.release()

```

  • 写回答

1条回答 默认 最新

  • GISer Liu 2024-02-22 16:14
    关注

    该回答引用自GPT-3.5,由博主GISer Liu编写:

    根据您提供的代码和问题描述,您遇到的主要问题是在将YOLOv5模型从ONNX格式转换为RKNN格式后,使用官方提供的test.py进行推理时出现了多个框和框大小不正确的情况。

    首先,我会根据您的描述给出解决思路和方案:

    1. 检查模型转换参数:您在转换模型时可能需要检查转换参数,确保没有遗漏或错误设置。尤其是检查与输入图像大小、数据格式以及量化等相关的参数。

    2. 检查后处理逻辑:在RKNN模型推理后,您的后处理逻辑可能需要进行调整,以适应RKNN模型输出的格式或数据结构。特别关注检测到的边界框坐标是否正确解析,并且确保NMS(非极大值抑制)算法的实现正确。

    3. 调试模型输出:您可以添加一些打印语句或使用调试器,检查RKNN模型输出与预期结果之间的差异,以确定问题出现的具体原因。

    4. 检查输入数据预处理:确保在进行RKNN推理之前,输入图像的预处理与训练和ONNX转换时的预处理保持一致。特别注意图像的归一化、尺寸调整和通道顺序等问题。

    接下来,我将尝试修改您提供的代码,主要集中在后处理逻辑部分,以解决多个框和框大小不正确的问题。在修改代码之前,我会先添加一些打印语句,以便更好地理解问题所在。修改后的代码如下所示:

    def draw(image, boxes, scores, classes):
        """Draw the boxes on the image.
        # Argument:
            image: original image.
            boxes: ndarray, boxes of objects.
            classes: ndarray, classes of objects.
            scores: ndarray, scores of objects.
            all_classes: all classes name.
        """
        print("{:^12} {:^12}  {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))
        print('-' * 50)
        for box, score, cl in zip(boxes, scores, classes):
            top, left, right, bottom = box
            top = int(top)
            left = int(left)
            right = int(right)
            bottom = int(bottom)
    
            cv2.rectangle(image, (left, top), (right, bottom), (255, 0, 0), 2)
            cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                        (left, top - 6),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        0.6, (0, 0, 255), 2)
    
            print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[cl], score, left, top, right, bottom))
    

    在这个修改中,我将绘制框的代码中的坐标顺序调整为(left, top, right, bottom),这样更符合通常的习惯。并且我添加了打印语句,以便在绘制框的同时输出框的坐标信息,以帮助我们更好地理解问题。

    请尝试运行修改后的代码,并观察输出结果以及打印信息,看是否能够更好地定位和解决问题。如果问题仍然存在,您可能需要进一步调试代码或检查模型转换过程中的参数设置。

    如果该回答解决了您的问题,请采纳!如果没有,请参考以下方案进行修订

    用户答题指南

    评论

报告相同问题?

问题事件

  • 已结题 (查看结题原因) 7月2日
  • 创建了问题 2月22日