T1_longskr 2024-12-25 10:15 采纳率: 0%
浏览 40

ResNet加入SE注意力模块后训练精度下降严重

在resnet中加入SE注意力模块后训练精度由以往的0.90下降到0.10是由于SE注意力模块不适合该任务吗?

class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.fc1 = nn.Linear(channel, channel // reduction, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.fc2 = nn.Linear(channel // reduction, channel, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        b, c, _, _ = x.size()
        y = x.mean(dim=(2, 3), keepdim=True)  # Global Average Pooling
        y = self.fc1(y.view(b, c))
        y = self.relu(y)
        y = self.fc2(y)
        y = self.sigmoid(y)
        return x * y.view(b, c, 1, 1)

class SEBottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
        super(SEBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.se = SELayer(planes * self.expansion, reduction)  # SE 模块在这里
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)
        out = self.se(out)  # SE 模块 forward

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

  • 写回答

1条回答 默认 最新

  • 道友老李 JWE233286一种基于机器视觉的水表指针读数识别及修正的方法 专利发明者 2024-12-25 10:32
    关注
    让【道友老李】来帮你解答,本回答参考通义千问大模型编写,并整理提供,如果还有疑问可以点击头像关注私信或评论。
    如果答案让您满意,请采纳、关注,非常感谢!
    ### 问题分析

    在ResNet中加入SE(Squeeze-and-Excitation)注意力模块后,训练精度从0.90下降到0.10,这显然是一个显著的性能下降。虽然SE模块在许多任务中被证明是有效的,但这种性能下降可能由多种原因引起。以下是一些可能的原因和解决方法:

    1. 实现错误:代码实现可能存在错误,导致SE模块没有正确工作。
    2. 超参数设置不当:例如,reduction参数设置不当可能导致模型性能下降。
    3. 数据集特性:某些数据集可能不适合使用SE模块,或者需要特定的调整。
    4. 训练策略:训练策略(如学习率、优化器、数据增强等)可能需要调整。

    代码审查

    首先,我们来审查一下提供的代码,看看是否存在明显的错误。

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    class SELayer(nn.Module):
        def __init__(self, channel, reduction=16):
            super(SELayer, self).__init__()
            self.fc1 = nn.Linear(channel, channel // reduction, bias=False)
            self.relu = nn.ReLU(inplace=True)
            self.fc2 = nn.Linear(channel // reduction, channel, bias=False)
            self.sigmoid = nn.Sigmoid()
    
        def forward(self, x):
            b, c, _, _ = x.size()
            y = x.mean(dim=(2, 3), keepdim=True)  # Global Average Pooling
            y = self.fc1(y.view(b, c))
            y = self.relu(y)
            y = self.fc2(y)
            y = self.sigmoid(y)
            return x * y.view(b, c, 1, 1)
    
    class SEBottleneck(nn.Module):
        expansion = 4
    
        def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
            super(SEBottleneck, self).__init__()
            self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(planes * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.se = SELayer(planes * self.expansion, reduction)  # SE 模块在这里
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            residual = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
            out = self.conv3(out)
            out = self.bn3(out)
            out = self.se(out)  # SE 模块 forward
            if self.downsample is not None:
                residual = self.downsample(x)
            out += residual
            out = self.relu(out)
            return out
    

    可能的问题和解决方案

    1. 实现错误

      • SELayer中的forward方法中,x.mean(dim=(2, 3), keepdim=True)应该返回一个形状为(b, c, 1, 1)的张量,而不是(b, c)。确保这一点是正确的。
      • y.view(b, c)应该是y.view(b, c, 1, 1)
    2. 超参数设置不当

      • reduction参数默认为16,可能对于某些数据集或任务来说太大了。可以尝试减小这个值,例如设置为8或4。
    3. 数据集特性

      • 确保数据集适合使用SE模块。如果数据集中的特征分布非常均匀,SE模块可能不会带来明显的好处。
    4. 训练策略

      • 调整学习率、优化器、数据增强等训练策略。例如,使用更小的学习率,增加数据增强的程度。

    示例代码调整

    class SELayer(nn.Module):
        def __init__(self, channel, reduction=16):
            super(SELayer, self).__init__()
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
            self.fc1 = nn.Linear(channel, channel // reduction, bias=False)
            self.relu = nn.ReLU(inplace=True)
            self.fc2 = nn.Linear(channel // reduction, channel, bias=False)
            self.sigmoid = nn.Sigmoid()
    
        def forward(self, x):
            b, c, _, _ = x.size()
            y = self.avg_pool(x).view(b, c)
            y = self.fc1(y)
            y = self.relu(y)
            y = self.fc2(y)
            y = self.sigmoid(y).view(b, c, 1, 1)
            return x * y
    
    class SEBottleneck(nn.Module):
        expansion = 4
    
        def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
            super(SEBottleneck, self).__init__()
            self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(planes * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.se = SELayer(planes * self.expansion, reduction)  # SE 模块在这里
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            residual = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
            out = self.conv3(out)
            out = self.bn3(out)
            out = self.se(out)  # SE 模块 forward
            if self.downsample is not None:
                residual = self.downsample(x)
            out += residual
            out = self.relu(out)
            return out
    

    结论

    通过上述分析和代码调整,可以尝试重新训练模型,观察是否有所改善。如果仍然存在问题,建议逐步调试并检查每个部分的输出,确保每个模块都按预期工作。同时,可以尝试不同的超参数和训练策略,以找到最佳配置。

    评论

报告相同问题?

问题事件

  • 创建了问题 12月25日