在使用SSD做目标检测时,最终模型存在误检较多的情况,比如做车牌检测时,会将不是车牌的区域误检测为车牌区域,从而导致后续的车牌字符识别出错。目前训练数据中已经非常精细的筛选掉了将背景错误标注为车牌的情况。想请教下各位大佬有没有什么好的办法进一步降低误检率呢。
1条回答 默认 最新
SuckeedTing 2020-07-16 16:41关注训练集中添加一些误检的图像,自动生成没有框的xml标注文件,训练时,读取xml,如果xml中没有目标,则正样本抽取0个,负样本抽取10个送入训练。
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报