7-1 单调递增最长子序列
设计一个O(n2)时间的算法,找出由n个数组成的序列的最长单调递增子序列。
输入格式:
输入有两行: 第一行:n,代表要输入的数列的个数 第二行:n个数,数字之间用空格格开
输出格式:
最长单调递增子序列的长度
输入样例:
在这里给出一组输入。例如:
5
1 3 5 2 9
输出样例:
在这里给出相应的输出。例如:
4
7-1 单调递增最长子序列
设计一个O(n2)时间的算法,找出由n个数组成的序列的最长单调递增子序列。
输入格式:
输入有两行: 第一行:n,代表要输入的数列的个数 第二行:n个数,数字之间用空格格开
输出格式:
最长单调递增子序列的长度
输入样例:
在这里给出一组输入。例如:
5
1 3 5 2 9
输出样例:
在这里给出相应的输出。例如:
4
参考:https://blog.csdn.net/lucienduan/article/details/24397949
/************************************************************************/
/* 算法导论15.4-5
* 找出n个数的序列中最长的单调递增子序列
* 利用动态规划思想,时间复杂度为O(n^2)*/
/************************************************************************/
#include<iostream>
using namespace std;
void printSequence(int *b,int* nums,int last);
int main()
{
int n=8;
int nums[9]={0,1,7,8,9,2,3,4,5};
//b存储当前元素所在递增子序列中当前元素的前一个元素序号
//c存储以当前元素结尾的递增子序列长度
//last存储当前元素为止的序列中最长递增子序列的最后一个元素的序号
//maxLen存储当前最长递增子序列的长度
int b[9]={0},c[9]={0},last[9]={0},maxLen=0;
c[1]=1,last[1]=1;
for (int i=1;i<=n;i++)
{
for (int j=1;j<i;j++)
{
if(nums[j]<nums[i] && c[j]+1>c[i])
{
c[i]=c[j]+1;
b[i]=j;
last[i]=i;
maxLen=c[i];
}else if(c[j]>c[i]){
maxLen=c[j];
last[i]=last[j];
}
}
}
cout<<"原序列长度为"<<n<<",如下:"<<endl;
for (int i=1;i<=n;i++)
{
cout<<nums[i]<<" ";
}
cout<<endl<<"最长递增子序列长度为"<<maxLen<<",如下:"<<endl;
printSequence(b,nums,last[n]);
cout<<endl;
return 0;
}
void printSequence(int *b,int* nums,int last)
{
if(b[last]>0)
printSequence(b,nums,b[last]);
cout<<nums[last]<<" ";
}