【python】关于Pandas DataFrame 的一些奇怪的问题

具体代码如下:

def reshape_data(time_today, data_today):
    #构建时间序列数组
    len_data = len(data_today)
    time_try = [parse(time_today)]*len_data
    #插入时间轴并定为最外轴
    data_today.insert(0, 'time', time_try)
    data_today.set_index(['time',data_today.index], inplace = True)
    return data_today

输入为一个字符串time_today和一个DataFrame data_today
然后在实际运行中提示出错,详细错误代码如下:

NotImplementedError    Traceback (most recent call last)
<ipython-input-14-d4c768794e17> in <module>
1 if __name__ == '__main__':
----> 2     main()
      3     rootdir

<ipython-input-8-0c303725fb93> in main()
     15     test_b = caculate_rate(a)
     16     print(test_b)
---> 17     test_b = reshape_data(time_a, test_b)
     18     save_csv(test_b, file_name_test, False)
     19     b = save_csv(test_a, file_name_test, True)

<ipython-input-13-1381f1d66cba> in reshape_data(time_today, data_today)
      9     data_today.index.names = ['name']
     10     data_today = data_today.reset_index()
---> 11     data_today.set_index(['time','name'], inplace = True)
     12 
     13     return data_today

G:\anaconda\lib\site-packages\pandas\core\frame.py in set_index(self, keys, drop, append, inplace, verify_integrity)
   3913             arrays.append(level)
   3914 
-> 3915         index = _ensure_index_from_sequences(arrays, names)
   3916 
   3917         if verify_integrity and not index.is_unique:

G:\anaconda\lib\site-packages\pandas\core\indexes\base.py in _ensure_index_from_sequences(sequences, names)
   4909         return Index(sequences[0], name=names)
   4910     else:
-> 4911         return MultiIndex.from_arrays(sequences, names=names)
   4912 
   4913 

G:\anaconda\lib\site-packages\pandas\core\indexes\multi.py in from_arrays(cls, arrays, sortorder, names)
   1272         from pandas.core.arrays.categorical import _factorize_from_iterables
   1273 
-> 1274         labels, levels = _factorize_from_iterables(arrays)
   1275         if names is None:
   1276             names = [getattr(arr, "name", None) for arr in arrays]

G:\anaconda\lib\site-packages\pandas\core\arrays\categorical.py in _factorize_from_iterables(iterables)
   2541         # For consistency, it should return a list of 2 lists.
   2542         return [[], []]
-> 2543     return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))

G:\anaconda\lib\site-packages\pandas\core\arrays\categorical.py in <listcomp>(.0)
   2541         # For consistency, it should return a list of 2 lists.
   2542         return [[], []]
-> 2543     return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))

G:\anaconda\lib\site-packages\pandas\core\arrays\categorical.py in _factorize_from_iterable(values)
   2513         codes = values.codes
   2514     else:
-> 2515         cat = Categorical(values, ordered=True)
   2516         categories = cat.categories
   2517         codes = cat.codes

G:\anaconda\lib\site-packages\pandas\core\arrays\categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
    355 
    356                 # FIXME
--> 357                 raise NotImplementedError("> 1 ndim Categorical are not "
    358                                           "supported at this time")
    359 

NotImplementedError: > 1 ndim Categorical are not supported at this time

这是什么神奇的事情啊?其他地方都没事,只有这里调用的时候出错,连语法都是一样的。

1个回答

不知道你的那个parse()函数是干啥的,去掉parse(),以下是没问题的

>>>
>>> time_today = '2019-01-24'
>>> data_today = pd.DataFrame({'key':['a','b','c'],'data1':[1,2,3],'data2':[4,5,6]})
>>> #构建时间序列数组
... len_data = len(data_today)
>>> time_try = [time_today]*len_data
>>> time_try
['2019-01-24', '2019-01-24', '2019-01-24']
>>> #time_try = [parse(time_today)]*len_data
... #插入时间轴并定为最外轴
... data_today.insert(0, 'time', time_try)
>>> data_today
         time key  data1  data2
0  2019-01-24   a      1      4
1  2019-01-24   b      2      5
2  2019-01-24   c      3      6
>>> data_today.set_index(['time',data_today.index], inplace = True)
>>> data_today
             key  data1  data2
time
2019-01-24 0   a      1      4
           1   b      2      5
           2   c      3      6
>>>

qq_30089875
qq_30089875 回复: a = ['s']*51 s = DataFrame(np.zeros(51*51).reshape((51,51)), index = a) time_try = [parse('20190124')]*len(a) s.insert(0, 'time', time_try) s.index.names = ['name'] s = s.reset_index() s.set_index(['time','name'],inplace = True)
一年多之前 回复
qq_30089875
qq_30089875 这就是奇怪的地方了,我这样写就没问题:
一年多之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
python pandas dataframe 中数组的拆分

我现在经过pyhon的apply计算得到一组数组,然后拼接到每一行dataframe后面,现在想把数组拆分成多行dataframe但是前面的字段还要保持,类似于透视表那样,如果不用新建dataframe直接在原来基础上实现该怎么做,谢谢![图片](https://img-ask.csdn.net/upload/201701/11/1484129516_102.jpg)

python pandas DataFrame 按照行的值域来分组

目前我正在学习python 的pandas模块 我需要对一个时间戳类型的单列Dataframe做出处理,数据样例如下: 0 1477967229 1 1477998606 2 1477990864 3 1477991914 4 1477962567 5 1477976182 6 1477979702 7 1477993668 8 1477995583 9 1477991619 10 1477995005 数据量为一天,我想按照小时把这个Dataframe划分为24组,并且统计每一组中数据的数量,请问应该怎么编写代码呢。 急求 谢谢各位了

Pandas的DataFrame的过滤查询

df3中的uuid代表用户ID,uuid中的用户ID有重复的,对应着不同eid(事件)下的其他列的数据,ctime为数据创建时间。现在想取出每个uuid下,最后一次ctime的行数据。 ![图片说明](https://img-ask.csdn.net/upload/201903/24/1553402960_673570.jpg)![图片说明](https://img-ask.csdn.net/upload/201903/24/1553402999_495440.jpg)

如何用Python的pandas实现DataFrame列的字符串截取

,截取的数字特征为最右边一个"="的数值(不一定是一位数) ![图片说明](https://img-ask.csdn.net/upload/201908/30/1567145119_473025.png) ![图片说明](https://img-ask.csdn.net/upload/201908/30/1567145778_562110.png) 用DataFrame输出即可

如何用Python的pandas实现DataFrame行的拆分,或者其他方法也可以。

大致目标就是以'Freq'列的分号拆分行,'Cfg'列的值也按分号匹配拆分,由于 'Cfg'列的分号多于'Freq'列,多余分号后的数值忽略掉, Freq'列为空的话,'Cfg'列 也让它为空,或者不做处理。 原DataFrame创建代码 ``` import pandas as pd import numpy as np dict1 = {'MEID':['31102','31103','31104'], 'Freq':['','4.0 ','5.0;35.0;36.0'], 'Cfg':['10;30;40;60;70;70;70','10;30;40;60;70;70;70','10;30;40;60;70;70;70']} df1 = pd.DataFrame(dict1) print(df1) ``` 原DataFrame ``` MEID Freq Cfg 311302 10;30;40;60;70;70;70 311303 4.0 10;30;40;60;70;70;70 311304 5.0;35.0;36.0 10;30;40;60;70;70;70 ``` 目标DataFrame ``` MEID Freq Cfg 311302 311303 4.0 10 311304 5.0 10 311304 35.0 30 311304 36.0 40 ``` 为防止我文字没描述清楚,我把目标DF和原DF的数据关系用下图表示一下。 ![图片说明](https://img-ask.csdn.net/upload/201909/02/1567390472_582007.png)

pandas dataframe数据结构,想检查索引列中的数据是否唯一怎么检查

如题 pandas dataframe数据结构,想检查索引列中的数据是否唯一怎么检查 不知道pandas中有没有这样的函数

python里dataframe的连乘处理

小弟刚接触python不久,卡在一个dataframe的数据处理问题上解决不了, 特来求救,谢谢大家! 我想在原来的dataframe最后加一列,这列等于前两列连乘的差,不晓得该怎么搞,大 致就是这样: 原本 df= a b 0 2 1 1 3 2 2 4 3 变成 df= a b c 0 2 1 1=2-1 1 3 2 4=2x3-1x2 2 4 3 18=2x3x4-1x2x3

pandas.dataframe 排序

对dataframe所有的行排序, PS:不是指定行排序........

pandas dataframe 将同一索引下的两条数据合并

5648 9536 2015-01-01 NaN 600.0 2015-02-01 NaN 600.0 2015-03-01 0.0 NaN 2015-03-01 NaN 600.0 2015-04-01 3500.0 NaN 2015-05-01 3500.0 NaN 2015-06-01 3500.0 NaN 如何变成 5648 9536 2015-01-01 NaN 600.0 2015-02-01 NaN 600.0 2015-03-01 0.0 600.0 2015-04-01 3500.0 NaN 2015-05-01 3500.0 NaN 2015-06-01 3500.0 NaN

python中 dataframe使用permutation和take对 列 进行随机排序失败

请问python中 dataframe使用sampler和take对列进行随机排列为什么不行呢? import pandas as pd import numpy as np from pandas import DataFrame from pandas import Series df=DataFrame(np.arange(20).reshape(5,4)) sampler=np.random.permutation(5) print(df.take(sampler,axis=1)) **报错如下**: Traceback (most recent call last): File "C:\Users\XXXX\Desktop\test190109.py", line 7, in <module> print(df.take(sampler,axis=1)) File "C:\Users\XXXxx\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\generic.py", line 2891, in take return self._take(indices, axis=axis, is_copy=is_copy) File "C:\Users\XXXXX\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\generic.py", line 2789, in _take verify=True) File "C:\Users\XXXXXX\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\internals.py", line 4530, in take indexer = maybe_convert_indices(indexer, n) File "C:\Users\xxxxx\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pandas\core\indexing.py", line 2480, in maybe_convert_indices raise IndexError("indices are out-of-bounds") IndexError: indices are out-of-bounds 目测是最后一行axis=1的问题?去掉了就能跑了

PandasDataFrame合并出错误结果是什么原因怎么办?

df1和df2合并,想要df1中的用户创建时间合并在df2相对应的用户ID后面,用了df2.join(df1),合并后的df3的行数应该和df2的行数一样。但是df3行数比df2行数多很多。 为了验证join()方法是否有效,另外新建了两个数据量小的df6和df7,结果合并后的df8是正确的想要的结果。 所以很费解为什么df1和df2用join合并就得不到正确结果。求大神指导。 ![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465090_652801.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465097_412438.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465101_584042.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465128_15993.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465145_93817.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465149_172638.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465154_153584.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465234_551295.jpg)![图片说明](https://img-ask.csdn.net/upload/201904/05/1554465243_776529.jpg)

python pandas apply 原理求解,如何在dataframe 中将同一行的某个数值塞进df结构的一列?

有一个data frame结构,其中一列是data frame组成的,其他的列都是str或者数值之类的,如何将一行中str一类的塞入df里? 我试过apply,结果很诡异。。。 函数里print出来的结果是想要的,但是返回以后拿到的结果city就都是 tyu一个数值了 高手求解。。。 ``` import pandas as pd def testcc(df1): #tmpdf = df1 tmpdf = df1['c'] value = df1['a'] # value = 111 tmpdf['city']=value print(tmpdf) return tmpdf df1 = pd.DataFrame({'a': ['qwe'], 'b': ['asd']}) df4 =df1 df3 = pd.DataFrame({'a': ['qwe']}) df2 = pd.DataFrame({'a': ['qwe', 'wer', 'ert', 'rty', 'tyu'], 'b': ['asd', 'sdf', 'dfg', 'fgh', 'ghj'], 'c': [df1,df3,df4,df1,df1]}) df2['d']=df2.apply(testcc,axis=1) print('------------------') print(df2['d']) ``` 结果是 ``` a b city 0 qwe asd qwe a b city 0 qwe asd qwe a city 0 qwe wer a b city 0 qwe asd ert a b city 0 qwe asd rty a b city 0 qwe asd tyu ------------------ 0 a b city 0 qwe asd tyu 1 a city 0 qwe wer 2 a b city 0 qwe asd tyu 3 a b city 0 qwe asd tyu 4 a b city 0 qwe asd tyu Name: d, dtype: object ```

Python如何从Pandas的一个DataFrame中获得第一列的索引,匹配到另一个DataFrame第一列索引的对应行,并对这些行中每一列的数值求和?

请问大神,Python如何从Pandas的一个DataFrame(A)中获得第一列的索引,匹配到另一个DataFrame(B)第一列的对应行,并对这些行中每一列的数值求和?

Python怎么取dataframe的第5行和第10行,并且按照第10行汇总求和,要求完整的代码,谢谢

Python怎么取dataframe的第5行和第10行,并且按照第10行汇总求和,要求完整的代码,谢谢

请问python中,如何抓取dataframe的列数和第n列的数据?

我以前用的都是 data['AttributeName']抓取某列的数据,想求个抓取列数第n列数据方法。

求助:python dataframe相同项的两行数相减,几个大神看来都说难

#求助:python dataframe相同项的两行数相减,几个大神看来都说难 数据如下图: ![图片说明](https://img-ask.csdn.net/upload/201909/20/1568972249_821101.jpg) 要求: 用python构成一个新dataframe,计算出相同Serialsnumber的Receive Date的差。(也就是说算出没部机收到日期的间隔天数) 急,请大神帮忙!!!! 问题补充: Serialsnumber不只两个是相同的,有写有三个或四个相同的,要求计算出最大和第二大的Receive Date的差值。补充数据如图: ![图片说明](https://img-ask.csdn.net/upload/201909/21/1569031111_932262.jpg)

python如何对dataframe中行去重?

RT,自己随便写了个,显示错误为 ValueError: Can only compare identically-labeled DataFrame objects 但总感觉思路都错了....请指教一下 ``` import pandas as pd from pandas import DataFrame L=[] file=open('F:\\FCD\\实验文本.txt') a=file.readlines() for line in a: L.append(line.split(',')) data=pd.DataFrame(L) for i in range(len(data)): for u in range(len(data)): a=data[i:i+1] b=data[u:u+1] if u != i and a==b: data.drop(data.index[[i,i+1]],inplace=True) ```

pandas中Dataframe中的操作问题

在一个Dataframe实例中,比如: ``` C2 = pd.DataFrame({'R':[1,2,1],'sum':[3,2,3]}) ``` 我想把 R=1和sum=3的那些数据中的sum值都改为8(假如说),代码该怎么写呢?? 可不可以用 ix和iloc实现??

【新手问题】如何将dataframe结构中的人名字符串拆分后统计出现次数

题主刚学pandas不久,遇到这个问题希望各位大大帮忙解决。 希望在一份电影数据表中统计重复出现次数前几位的演员名称,原始dataframe数据格式如下: ![图片说明](https://img-ask.csdn.net/upload/202002/24/1582539723_693897.png) 这是想要进行字符串统计的cast序列内容![图片说明](https://img-ask.csdn.net/upload/202002/24/1582539816_477529.png) 尝试使用了values_count()方法,没有效果 也尝试了Counter()方法,报错unhashed list 想知道如何正确运用分隔符把这些数据切成单个的字符串并存入列表的形式,再进行统计 还有想知道unhashed list报错的解决方法,网上只说了为什么但是好像查不到如何解决 谢谢各位大大 ———————————————————————————————— 补充一个新问题,同样与计数有关 ![图片说明](https://img-ask.csdn.net/upload/202002/24/1582540105_782985.png) 如何计算各个州的婴儿出生性别F和M的总和,想要绘制成并列条形图的形式,但是用duplicated()方法好像统计不出来,需要用自定义函数生成,想了半天没想通,希望大大们顺便支个招。

4小时玩转微信小程序——基础入门与微信支付实战

这是一个门针对零基础学员学习微信小程序开发的视频教学课程。课程采用腾讯官方文档作为教程的唯一技术资料来源。杜绝网络上质量良莠不齐的资料给学员学习带来的障碍。 视频课程按照开发工具的下载、安装、使用、程序结构、视图层、逻辑层、微信小程序等几个部分组织课程,详细讲解整个小程序的开发过程

Python可以这样学(第四季:数据分析与科学计算可视化)

董付国老师系列教材《Python程序设计(第2版)》(ISBN:9787302436515)、《Python可以这样学》(ISBN:9787302456469)配套视频,在教材基础上又增加了大量内容,通过实例讲解numpy、scipy、pandas、statistics、matplotlib等标准库和扩展库用法。

组成原理课程设计(实现机器数的真值还原等功能)

实现机器数的真值还原(定点小数)、定点小数的单符号位补码加减运算、定点小数的补码乘法运算和浮点数的加减运算。

javaWeb图书馆管理系统源码mysql版本

系统介绍 图书馆管理系统主要的目的是实现图书馆的信息化管理。图书馆的主要业务就是新书的借阅和归还,因此系统最核心的功能便是实现图书的借阅和归还。此外,还需要提供图书的信息查询、读者图书借阅情况的查询等

土豆浏览器

土豆浏览器可以用来看各种搞笑、电影、电视剧视频

Java面试题大全(2020版)

发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~ 本套Java面试题大全,全的不能再全,哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别? JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。 JRE:Java Runtime Environ...

Java8零基础入门视频教程

这门课程基于主流的java8平台,由浅入深的详细讲解了java SE的开发技术,可以使java方向的入门学员,快速扎实的掌握java开发技术!

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

TTP229触摸代码以及触摸返回值处理

自己总结的ttp229触摸代码,触摸代码以及触摸按键处理

网络工程师小白入门--【思科CCNA、华为HCNA等网络工程师认证】

本课程适合CCNA或HCNA网络小白同志,高手请绕道,可以直接学习进价课程。通过本预科课程的学习,为学习网络工程师、思科CCNA、华为HCNA这些认证打下坚实的基础! 重要!思科认证2020年2月24日起,已启用新版认证和考试,包括题库都会更新,由于疫情原因,请关注官网和本地考点信息。题库网络上很容易下载到。

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

java jdk 8 帮助文档 中文 文档 chm 谷歌翻译

JDK1.8 API 中文谷歌翻译版 java帮助文档 JDK API java 帮助文档 谷歌翻译 JDK1.8 API 中文 谷歌翻译版 java帮助文档 Java最新帮助文档 本帮助文档是使用谷

Ubuntu18.04安装教程

Ubuntu18.04.1安装一、准备工作1.下载Ubuntu18.04.1 LTS2.制作U盘启动盘3.准备 Ubuntu18.04.1 的硬盘空间二、安装Ubuntu18.04.1三、安装后的一些工作1.安装输入法2.更换软件源四、双系统如何卸载Ubuntu18.04.1新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列...

快速排序---(面试碰到过好几次)

原理:    快速排序,说白了就是给基准数据找其正确索引位置的过程.    如下图所示,假设最开始的基准数据为数组第一个元素23,则首先用一个临时变量去存储基准数据,即tmp=23;然后分别从数组的两端扫描数组,设两个指示标志:low指向起始位置,high指向末尾.    首先从后半部分开始,如果扫描到的值大于基准数据就让high减1,如果发现有元素比该基准数据的值小(如上图中18&amp;lt...

手把手实现Java图书管理系统(附源码)

【超实用课程内容】 本课程演示的是一套基于Java的SSM框架实现的图书管理系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的java人群。详细介绍了图书管理系统的实现,包括:环境搭建、系统业务、技术实现、项目运行、功能演示、系统扩展等,以通俗易懂的方式,手把手的带你从零开始运行本套图书管理系统,该项目附带全部源码可作为毕设使用。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27513 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/27513,点击右下方课程资料、代码、课件等打包下载

HTML期末大作业

这是我自己做的HTML期末大作业,花了很多时间,稍加修改就可以作为自己的作业了,而且也可以作为学习参考

Python数据挖掘简易入门

&nbsp; &nbsp; &nbsp; &nbsp; 本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

极简JAVA学习营第四期(报名以后加助教微信:eduxy-1)

想学好JAVA必须要报两万的培训班吗? Java大神勿入 如果你: 零基础想学JAVA却不知道从何入手 看了一堆书和视频却还是连JAVA的环境都搭建不起来 囊中羞涩面对两万起的JAVA培训班不忍直视 在职没有每天大块的时间专门学习JAVA 那么恭喜你找到组织了,在这里有: 1. 一群志同道合立志学好JAVA的同学一起学习讨论JAVA 2. 灵活机动的学习时间完成特定学习任务+每日编程实战练习 3. 热心助人的助教和讲师及时帮你解决问题,不按时完成作业小心助教老师的家访哦 上一张图看看前辈的感悟: &nbsp; &nbsp; 大家一定迫不及待想知道什么是极简JAVA学习营了吧,下面就来给大家说道说道: 什么是极简JAVA学习营? 1. 针对Java小白或者初级Java学习者; 2. 利用9天时间,每天1个小时时间; 3.通过 每日作业 / 组队PK / 助教答疑 / 实战编程 / 项目答辩 / 社群讨论 / 趣味知识抢答等方式让学员爱上学习编程 , 最终实现能独立开发一个基于控制台的‘库存管理系统’ 的学习模式 极简JAVA学习营是怎么学习的? &nbsp; 如何报名? 只要购买了极简JAVA一:JAVA入门就算报名成功! &nbsp;本期为第四期极简JAVA学习营,我们来看看往期学员的学习状态: 作业看这里~ &nbsp; 助教的作业报告是不是很专业 不交作业打屁屁 助教答疑是不是很用心 &nbsp; 有奖抢答大家玩的很嗨啊 &nbsp; &nbsp; 项目答辩终于开始啦 &nbsp; 优秀者的获奖感言 &nbsp; 这是答辩项目的效果 &nbsp; &nbsp; 这么细致的服务,这么好的氛围,这样的学习效果,需要多少钱呢? 不要1999,不要199,不要99,只要9.9 是的你没听错,只要9.9以上所有就都属于你了 如果你: 1、&nbsp;想学JAVA没有基础 2、&nbsp;想学JAVA没有整块的时间 3、&nbsp;想学JAVA没有足够的预算 还等什么?赶紧报名吧,抓紧抢位,本期只招300人,错过只有等时间待定的下一期了 &nbsp; 报名请加小助手微信:eduxy-1 &nbsp; &nbsp;

C++语言基础视频教程

C++语言基础视频培训课程:本课与主讲者在大学开出的程序设计课程直接对接,准确把握知识点,注重教学视频与实践体系的结合,帮助初学者有效学习。本教程详细介绍C++语言中的封装、数据隐藏、继承、多态的实现等入门知识;主要包括类的声明、对象定义、构造函数和析构函数、运算符重载、继承和派生、多态性实现等。 课程需要有C语言程序设计的基础(可以利用本人开出的《C语言与程序设计》系列课学习)。学习者能够通过实践的方式,学会利用C++语言解决问题,具备进一步学习利用C++开发应用程序的基础。

UnityLicence

UnityLicence

软件测试2小时入门

本课程内容系统、全面、简洁、通俗易懂,通过2个多小时的介绍,让大家对软件测试有个系统的理解和认识,具备基本的软件测试理论基础。 主要内容分为5个部分: 1 软件测试概述,了解测试是什么、测试的对象、原则、流程、方法、模型;&nbsp; 2.常用的黑盒测试用例设计方法及示例演示;&nbsp; 3 常用白盒测试用例设计方法及示例演示;&nbsp; 4.自动化测试优缺点、使用范围及示例‘;&nbsp; 5.测试经验谈。

YOLOv3目标检测实战:训练自己的数据集

YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。 本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。 除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:交通标志识别》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 敬请关注并选择学习!

Python数据分析师-实战系列

系列课程主要包括Python数据分析必备工具包,数据分析案例实战,核心算法实战与企业级数据分析与建模解决方案实战,建议大家按照系列课程阶段顺序进行学习。所有数据集均为企业收集的真实数据集,整体风格以实战为导向,通俗讲解Python数据分析核心技巧与实战解决方案。

YOLOv3目标检测实战系列课程

《YOLOv3目标检测实战系列课程》旨在帮助大家掌握YOLOv3目标检测的训练、原理、源码与网络模型改进方法。 本课程的YOLOv3使用原作darknet(c语言编写),在Ubuntu系统上做项目演示。 本系列课程包括三门课: (1)《YOLOv3目标检测实战:训练自己的数据集》 包括:安装darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 (2)《YOLOv3目标检测:原理与源码解析》讲解YOLOv1、YOLOv2、YOLOv3的原理、程序流程并解析各层的源码。 (3)《YOLOv3目标检测:网络模型改进方法》讲解YOLOv3的改进方法,包括改进1:不显示指定类别目标的方法 (增加功能) ;改进2:合并BN层到卷积层 (加快推理速度) ; 改进3:使用GIoU指标和损失函数 (提高检测精度) ;改进4:tiny YOLOv3 (简化网络模型)并介绍 AlexeyAB/darknet项目。

超详细MySQL安装及基本使用教程

一、下载MySQL 首先,去数据库的官网http://www.mysql.com下载MySQL。 点击进入后的首页如下:  然后点击downloads,community,选择MySQL Community Server。如下图:  滑到下面,找到Recommended Download,然后点击go to download page。如下图:  点击download进入下载页面选择No...

一学即懂的计算机视觉(第一季)

图像处理和计算机视觉的课程大家已经看过很多,但总有“听不透”,“用不了”的感觉。课程致力于创建人人都能听的懂的计算机视觉,通过生动、细腻的讲解配合实战演练,让学生真正学懂、用会。 【超实用课程内容】 课程内容分为三篇,包括视觉系统构成,图像处理基础,特征提取与描述,运动跟踪,位姿估计,三维重构等内容。课程理论与实战结合,注重教学内容的可视化和工程实践,为人工智能视觉研发及算法工程师等相关高薪职位就业打下坚实基础。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/26281 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程2年有效观看时长,但是大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/26281,点击右下方课程资料、代码、课件等打包下载

董付国老师Python全栈学习优惠套餐

购买套餐的朋友可以关注微信公众号“Python小屋”,上传付款截图,然后领取董老师任意图书1本。

爬取妹子图片(简单入门)

安装第三方请求库 requests 被网站禁止了访问 原因是我们是Python过来的 重新给一段 可能还是存在用不了,使用网页的 编写代码 上面注意看匹配内容 User-Agent:请求对象 AppleWebKit:请求内核 Chrome浏览器 //请求网页 import requests import re //正则表达式 就是去不规则的网页里面提取有规律的信息 headers = { 'User-Agent':'存放浏览器里面的' } response = requests.get

web网页制作期末大作业

分享思维,改变世界. web网页制作,期末大作业. 所用技术:html css javascript 分享所学所得

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

相关热词 c# 局部 截图 页面 c#实现简单的文件管理器 c# where c# 取文件夹路径 c# 对比 当天 c# fir 滤波器 c# 和站 队列 c# txt 去空格 c#移除其他类事件 c# 自动截屏
立即提问