用tensorflow-gpu跑SSD-Mobilenet模型GPU使用率很低这是为什么

这是GPU运行情况
这是GPU运行情况
这是训练过程
这是训练过程

1个回答

batch size太小,导致模型的并行化程度太低。还有你的cpu、内存/显存带宽性能不足。

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
用tensorflow-gpu跑SSD-Mobilenet模型隔一段时间就会出现以下内容
![图片说明](https://img-ask.csdn.net/upload/201903/16/1552739746_369680.png) 我用的以下命令python object____detection/train.py --train_dir object_detection/train --pipeline_config_path object__detection/ssd__model/ssd_mobilenet_v1_pets.config___ 然后在object_detection 目录下没有见到train文件夹 这正常吗,我之前用CPU跑的时候很快就创建了train文件夹
tensorflow-gpu跑训练时GPU的compute0使用率90%多,compute1使用率却为0%
如题,tensorflow-gpu跑训练时,Windows的任务管理器显示GPU的compute0使用率90%多,compute1使用率却为0%,截图如下,请问是什么原因? ![图片说明](https://img-ask.csdn.net/upload/201909/22/1569145936_781691.png)
tensorflow-gpu为何无法调用GPU进行运算???
如题,本人是小白级别的爱好者,使用的是联想台式机,win10系统,有一块GeForce GT730的独立显卡,想尝试安装tensorflow-gpu 进行加速。 在参考官网方法后,升级了显卡驱动,安装了CUDA9.0 及配套的cudnn7 并添加了环境变量。然后pip 安装tensorflow-gpu 安装成功后,import tensorflow as tf 不报错,但是运行如下代码时,始终显示GPU使用率为0 ``` import tensorflow as tf with tf.device('/cpu:0'): a=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[2,3],name='a') b=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[3,2],name='b') c=tf.matmul(a, b) sess=tf.Session(config=tf.ConfigProto(allow_soft_placement=False, log_device_placement=True)) print(sess.run(c)) ``` 试用如下代码检查是否有GPU可以被使用: ``` import os from tensorflow.python.client import device_lib os.environ["TF_CPP_MIN_LOG_LEVEL"] = "99" if __name__ == "__main__": print(device_lib.list_local_devices()) ``` 显示 只有一个CPU可以被调用 ``` [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 15723487639721858299 ] ``` 那么问题来了。。既然已经成功安装了tensorflow-gpu,为什么仍然无法调用gpu进行计算呢。。 而且,装好tensorflow-gpu之后,双击程序会闪退,但是从IDLE中run是可以运行的,也不报错,但就是不分配给GPU运算。 查看了一下cuda,显示GPU not supported ![图片说明](https://img-ask.csdn.net/upload/201811/08/1541663479_238541.jpg) 这就愈发郁闷了。。。。。。 深知肯定是自己还有什么地方没设置好,但是网上也找不到对应的教程了,只好在此想各位大了!!!! 万望赐教!!!! 感激不尽!!!!
tensorflow-gpu为何无法调用GPU进行运算?
如题,本人是小白级别的爱好者,使用的是联想台式机,win10系统,有一块GeForce GT730的独立显卡,想尝试安装tensorflow-gpu 进行加速。 在参考官网方法后,升级了显卡驱动,安装了CUDA9.0 及配套的cudnn7 并添加了环境变量。然后pip 安装tensorflow-gpu 安装成功后,import tensorflow as tf 不报错,但是运行如下代码时,始终显示GPU使用率为0 ``` import tensorflow as tf with tf.device('/cpu:0'): a=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[2,3],name='a') b=tf.constant([1.0,2.0,3.0,4.0,5.0,6.0],shape=[3,2],name='b') c=tf.matmul(a, b) sess=tf.Session(config=tf.ConfigProto(allow_soft_placement=False, log_device_placement=True)) print(sess.run(c)) ``` 试用如下代码检查是否有GPU可以被使用: ``` import os from tensorflow.python.client import device_lib os.environ["TF_CPP_MIN_LOG_LEVEL"] = "99" if __name__ == "__main__": print(device_lib.list_local_devices()) ``` 显示 只有一个CPU可以被调用 ``` [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 15723487639721858299 ] ``` 那么问题来了。。既然已经成功安装了tensorflow-gpu,为什么仍然无法调用gpu进行计算呢。。 而且,装好tensorflow-gpu之后,双击程序会闪退,但是从IDLE中run是可以运行的,也不报错,但就是不分配给GPU运算。 查看了一下cuda,显示GPU not supported ![图片说明](https://img-ask.csdn.net/upload/201811/08/1541662095_841538.jpg) 这就愈发郁闷了。。。。。。 深知肯定是自己还有什么地方没设置好,但是网上也找不到对应的教程了,只好在此想各位大了!!!! 万望赐教!!!! 感激不尽!!!!
tensorflow-gpu:Faild to load tensorflow native runtime
linux系统下,安装好了cuda9.0+cudnn7.5+tensorflow-gpu1.11.0,运行代码时出现f![图片说明](https://img-ask.csdn.net/upload/201905/23/1558602428_698955.png), 但是如果将tensorflow-gpu版本换成对于的tensorflow cpu版本时可以运行的,咋回事???
tensorflow-gpu Failed to get convolution algorithm.
成功安装了gpu版的tensorflow之后,尝试跑两个神经网 第一个:全连接的DNN 关键代码如下: ``` xs=tf.placeholder(tf.float32,[None,10]) ys=tf.placeholder(tf.float32,[None,7]) 'layer1:ful connect' W_fc1=weight_variable([10,5000],name_data=None) b_fc1=bias_variable([5000],name_data=None) h_fc1=tf.nn.relu(tf.matmul(xs,W_fc1)+b_fc1) 'layer2:ful connect' W_fc2=weight_variable([5000,5000],name_data=None) b_fc2=bias_variable([5000],name_data=None) h_fc2=tf.nn.relu(tf.matmul(h_fc1,W_fc2)+b_fc2) 'layer3:ful connect' W_fc3=weight_variable([5000,5000],name_data=None) b_fc3=bias_variable([5000],name_data=None) h_fc3=tf.nn.relu(tf.matmul(h_fc2,W_fc3)+b_fc3) 'output layer::ful connect,maxsoft' W_fc4=weight_variable([5000,7],name_data=None) b_fc4=bias_variable([7],name_data=None) output=tf.nn.sigmoid(tf.matmul(h_fc3,W_fc4)+b_fc4) ``` 能够顺利的利用gpu加速,确实比cpu的计算速度快不少。 然而,在跑cnn的时候(部分代码如下) ``` 'def weights' def weight_variable(shape,name_data): initial=tf.truncated_normal(shape,stddev=0.1) return tf.Variable(initial,dtype=tf.float32,name=name_data) 'def biases' def bias_variable(shape,name_data): initial=tf.constant(0.1,shape=shape) return tf.Variable(initial,dtype=tf.float32,name=name_data) 'def conv2d layer' def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') 'def pooling layer as max_pool' def max_pool_2x2_v(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='VALID') 'def pooling layer as max_pool' def max_pool_2x2_s(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,1,1,1],padding='SAME') #input layer 'placeholder xs & ys' xs=tf.placeholder(tf.float32,[None,64]) ys=tf.placeholder(tf.float32,[None,1]) 'reshape the xs as x_image,which shape is 10*10' x_image=tf.reshape(xs,[-1,8,8,1]) print('red input::',x_image) #layer2:conv layer 2 patches 'patch1' W_conv_r_1_1=weight_variable([3,3,1,20],name_data='W_conv_r_1_1') b_conv_r_1_1=bias_variable([20],name_data='b_conv_r_1_1') h_conv_r_1_1=tf.nn.relu6(conv2d(x_image,W_conv_r_1_1)+b_conv_r_1_1) 'patch2' W_conv_r_1_2=weight_variable([3,3,1,10],name_data='W_conv_r_1_2') b_conv_r_1_2=bias_variable([10],name_data='b_conv_r_1_2') h_conv_r_1_2=tf.nn.relu6(conv2d(x_image,W_conv_r_1_2)+b_conv_r_1_2) 'concat to layer2' h_conv_r_1=tf.concat([h_conv_r_1_1,h_conv_r_1_2],3) print("red layer2::",h_conv_r_1) #layer3:conv layer:1 patch add with h_conv_r_1_2 'patch1' W_conv_r_2_1=weight_variable([5,5,30,30],name_data='W_conv_r_2_1') b_conv_r_2_1=bias_variable([30],name_data='b_conv_r_2_1') h_conv_r_2_1=tf.nn.elu(conv2d(h_conv_r_1,W_conv_r_2_1)+b_conv_r_2_1) 'patch for next layer' W_conv_r_2_2=weight_variable([5,5,30,15],name_data='W_conv_r_2_2') b_conv_r_2_2=bias_variable([15],name_data='b_conv_r_2_2') h_conv_r_2_2=tf.nn.elu(conv2d(h_conv_r_1,W_conv_r_2_2)+b_conv_r_2_2) 'concat for layer3' h_conv_r_2=tf.concat([h_conv_r_2_1,h_conv_r_1_2],3) print('red layer3;:',h_conv_r_2) ``` 上述代码是一个利用cnn训练黑白棋的程序,可以在CPU环境下顺利的运行,但是在gpu环境下,运行时会报错:Failed to get convolution algorithm (无法获得卷积算法) 完整的报错信息如下: ``` Traceback (most recent call last): File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call return fn(*args) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1319, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1407, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [[{{node Conv2D}} = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, W_conv_r_1_1/read)]] [[{{node Sigmoid/_75}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_105_Sigmoid", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py", line 326, in <module> try_point=sess.run(prediction_r, feed_dict={xs:board_try,ys:[[0.0001]]}) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 929, in run run_metadata_ptr) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run feed_dict_tensor, options, run_metadata) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run run_metadata) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [[node Conv2D (defined at C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py:31) = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, W_conv_r_1_1/read)]] [[{{node Sigmoid/_75}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_105_Sigmoid", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] Caused by op 'Conv2D', defined at: File "<string>", line 1, in <module> File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\idlelib\run.py", line 130, in main ret = method(*args, **kwargs) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\idlelib\run.py", line 357, in runcode exec(code, self.locals) File "C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py", line 57, in <module> h_conv_r_1_1=tf.nn.relu6(conv2d(x_image,W_conv_r_1_1)+b_conv_r_1_1) File "C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py", line 31, in conv2d return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1044, in conv2d data_format=data_format, dilations=dilations, name=name) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\util\deprecation.py", line 488, in new_func return func(*args, **kwargs) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 3274, in create_op op_def=op_def) File "C:\Users\fengg\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1770, in __init__ self._traceback = tf_stack.extract_stack() UnknownError (see above for traceback): Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [[node Conv2D (defined at C:\Users\fengg\Desktop\Othello with ResNet 3\Othello with ResNet-large\Othello with ResNet-large\train_ResNet.py:31) = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, W_conv_r_1_1/read)]] [[{{node Sigmoid/_75}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_105_Sigmoid", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]] ``` 请问这个问题该如何解决,谢谢了!
关于tensorflow-gpu的一些问题
我已经成功安装了tensorflow-gpu,CUDA版本9.0,也按照要求配置好了cuDNN相关文件,环境变量也已添加 但是在pycharm中仍然报错,python里面运行正常。如图: ![![![![图片说明](https://img-ask.csdn.net/upload/201809/17/1537192313_707897.png)图片说明](https://img-ask.csdn.net/upload/201809/17/1537192308_765.png)图片说明](https://img-ask.csdn.net/upload/201809/17/1537192300_286821.png)图片说明](https://img-ask.csdn.net/upload/201809/17/1537192050_43709.png) 实在不知道怎么办了,希望大佬能帮帮我这个小白吧,万分感谢!
怎样正确在pycharm运行tensorflow-gpu
我在网上尝试寻找正确安装与运行tensorflow-gpu的方法。 最终卡在了无法导入tensorflow,但是却可以.出联想方法,求助。 ![图片说明](https://img-ask.csdn.net/upload/201909/27/1569546276_565168.png) 全部报错如下: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:/PycharmProjects/DeepLearning2/demo.py", line 1, in <module> import tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Users\machenike\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Users\machenike\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.
安装tensorflow-gpu后运行程序出现An error ocurred while starting the kernel问题
tensorflow2.0,cuda10.2,cudnn7.6,使用improt语句没有问题, 但是在执行model.add()语句时报错 2019-12-29 17:01:21.546770: F .\tensorflow/core/kernels/random_op_gpu.h:227] Non-OK-status: GpuLaunchKernel(FillPhiloxRandomKernelLaunch<Distribution>, num_blocks, block_size, 0, d.stream(), gen, data, size, dist) status: Internal: invalid device function 没有找到合适的解决方法,在此求助!感谢!
求助啊,tensorflow-gpu的配置,4天没搞出来,崩溃了
大佬们求助,小弟用win7 64位+tensorflow-1.2.0rc0--gp+cuda8.0.61+cudnn5.1+gtx1080来配置深度学习的环境。 结果搞了4天,pycharm控制台一直出现 can not cuInit: CUDA_NO_DEVICE_ERROR......的错误,gpu也启动不了,只能用cpu。 而且更糟糕的是,nvdia的控制面板也打不开,总是出错,停止工作。因此,刚开始怀疑是驱动的问题,从官网上下载了最新的驱动,结果两个问题都没解决。 后来,我发现cuda的测试例子中的deviceQuery和bandwidthTest都运行失败,说明我连cuda都没装成功,简直吐血。对了,cuda自带的驱动是375.61. 重装驱动也没用 实在没办,法,谁来救救我
pycharm中如何用tensoflow-gpu运行文件
pycharm中安装了tensorflow与tensorflow-gpu,如何用tensorflow-gpu运行文件 当我只安装tensorflow时文件可以以cpu运行,但是如果配置两个都安装的时候就不可以运行了,为什么啊,求各位大佬解答。 ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569424897_25493.png) 最后也没有报错,不知道什么原因 ![图片说明](https://img-ask.csdn.net/upload/201909/25/1569424976_365833.png) tensorflow都已安装
tensorflow-gpu 训练启动的时候内存炸了 显存没有消耗
为啥啊 难道我用GPU跑也需要内存达到要求吗 本来想着只用显存 内存没有消耗的 这下又跑不起来了
Tensorflow-gpu 显存不会自动释放?
在jupyter上跑with tf.Session() as sess语句结束后,电脑变得很卡,打开任务管理器 显存占用3.2G,点了restart显存才能释放,我显存4G的,这是什么原因?为什么教学视频中用cpu 没这个问题
求教,跑tensorflow-gpu测试代码时报错cudaGetDevice() failed. Status: cudaGetErrorString symbol not found
![图片说明](https://img-ask.csdn.net/upload/201911/20/1574255233_540412.png) cuda版本![图片说明](https://img-ask.csdn.net/upload/201911/20/1574255339_304467.png) python版本3.7
利用conda install TensorFlow-gpu在win7上conda3.7版本上安装tensorflow后,测试时出现下面的问题
在测试import TensorFlow as tf print('hello'),出现下列问题,请问这是什么原因造成的,如何改? ``` Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3296, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-d1ce02c95f3b>", line 1, in <module> runfile('C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py', wdir='C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master') File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/jianjiu17/Desktop/deep-learning-from-scratch-master/uittle.py", line 1, in <module> import tensorflow as tf File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "D:\Program Files\JetBrains\PyCharm 2019.1.3\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "D:\ProgramData\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "D:\ProgramData\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的程序。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. ```
关于Ubuntu16.04上tensorflow-gpu 的cudnn安装问题
跑了下 MNIST卷积神经网络的例子,出现了如图错误,说我cudnn版本安装错误。可我从来没有安装过cudnn7的版本啊,而且我安装cudnn5.1.10一直出现 不是连接符号的问题,求解啊![图片说明](https://img-ask.csdn.net/upload/201712/01/1512102517_6601.jpg)
tensorboard提示错误cannot import name 'dump_age'
最开始使用tensorboard的时候是没有问题的,但是不知道为什么,用了几次之后就变成了这样,每次都是提示cannot import name 'dump age',之前没有遇到过这种错误,希望有大佬可以帮忙解答一下。非常感谢 代码是没有问题的,我用最开始用过的代码提示也是这样,想在相当于整个tensorboard不能用了。 图片我就不上传了,截的图一直没办法上传,有点蛋疼! CMD中执行的命令如下: C:\Users\Lenovo>e: E:\>cd E:\Python\Jupyter notebook\Tensorflow-study\inception_log E:\Python\Jupyter notebook\Tensorflow-study\inception_log>tensorboard --host=127.0.0.1 Traceback (most recent call last): File "e:\anaconda3\envs\tensorflow-gpu\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "e:\anaconda3\envs\tensorflow-gpu\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "E:\Anaconda3\envs\tensorflow-gpu\Scripts\tensorboard.exe\__main__.py", line 5, in <module> File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorboard\main.py", line 45, in <module> from tensorboard import default File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorboard\default.py", line 37, in <module> from tensorboard.plugins.audio import audio_plugin File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorboard\plugins\audio\audio_plugin.py", line 23, in <module> from werkzeug import wrappers File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\__init__.py", line 151, in <module> __import__('werkzeug.exceptions') File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\exceptions.py", line 71, in <module> from werkzeug.wrappers import Response File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\wrappers\__init__.py", line 26, in <module> from .common_descriptors import CommonRequestDescriptorsMixin File "e:\anaconda3\envs\tensorflow-gpu\lib\site-packages\werkzeug\wrappers\common_descriptors.py", line 6, in <module> from ..http import dump_age ImportError: cannot import name 'dump_age' E:\Python\Jupyter notebook\Tensorflow-study\inception_log>
为什么我在gpu上训练模型但是gpu利用率为0且运行速度还是很慢?
![图片说明](https://img-ask.csdn.net/upload/201906/28/1561670010_563259.png) 为什么我在gpu上训练模型但是gpu利用率为0且运行速度还是很慢? 模型主要利用的是tensorflow和keras 已经安装了tensorflow-gpu和cuda
tensorflow 的gpu利用率很低
1.使用tensorflow训练fcn网络,训练速度很慢,使用tensorboard查看了fcn的图,显示全部都是在gpu上,但是gpu利用率一直是30%多,没有超过40%。 2。我使用的batchsize是1,gpu利用率一直都是30多,若修改为其他比较大的数据,例如128,gpu利用率可以达到60%多,但是仍然无法达到90%。 这是为什么?怎么会这样呢?
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私...
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
Linux(服务器编程):15---两种高效的事件处理模式(reactor模式、proactor模式)
前言 同步I/O模型通常用于实现Reactor模式 异步I/O模型则用于实现Proactor模式 最后我们会使用同步I/O方式模拟出Proactor模式 一、Reactor模式 Reactor模式特点 它要求主线程(I/O处理单元)只负责监听文件描述符上是否有事件发生,有的话就立即将时间通知工作线程(逻辑单元)。除此之外,主线程不做任何其他实质性的工作 读写数据,接受新的连接,以及处...
阿里面试官问我:如何设计秒杀系统?我的回答让他比起大拇指
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图和个人联系方式,欢迎Star和指教 前言 Redis在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在Redis的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸,打败了...
五年程序员记流水账式的自白。
不知觉已中码龄已突破五年,一路走来从起初铁憨憨到现在的十九线程序员,一路成长,虽然不能成为高工,但是也能挡下一面,从15年很火的android开始入坑,走过java、.Net、QT,目前仍处于android和.net交替开发中。 毕业到现在一共就职过两家公司,目前是第二家,公司算是半个创业公司,所以基本上都会身兼多职。比如不光要写代码,还要写软著、软著评测、线上线下客户对接需求收集...
C语言魔塔游戏
很早就很想写这个,今天终于写完了。 游戏截图: 编译环境: VS2017 游戏需要一些图片,如果有想要的或者对游戏有什么看法的可以加我的QQ 2985486630 讨论,如果暂时没有回应,可以在博客下方留言,到时候我会看到。 下面我来介绍一下游戏的主要功能和实现方式 首先是玩家的定义,使用结构体,这个名字是可以自己改变的 struct gamerole { char n...
一文详尽系列之模型评估指标
点击上方“Datawhale”,选择“星标”公众号第一时间获取价值内容在机器学习领域通常会根据实际的业务场景拟定相应的不同的业务指标,针对不同机器学习问题如回归、分类、排...
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观...
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外...
压测学习总结(1)——高并发性能指标:QPS、TPS、RT、吞吐量详解
一、QPS,每秒查询 QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。互联网中,作为域名系统服务器的机器的性能经常用每秒查询率来衡量。 二、TPS,每秒事务 TPS:是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip installselenium -ihttps://pypi.tuna.tsinghua.edu.cn/simple/ ...
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca...
2020年,冯唐49岁:我给20、30岁IT职场年轻人的建议
点击“技术领导力”关注∆每天早上8:30推送 作者|Mr.K 编辑| Emma 来源|技术领导力(ID:jishulingdaoli) 前天的推文《冯唐:职场人35岁以后,方法论比经验重要》,收到了不少读者的反馈,觉得挺受启发。其实,冯唐写了不少关于职场方面的文章,都挺不错的。可惜大家只记住了“春风十里不如你”、“如何避免成为油腻腻的中年人”等不那么正经的文章。 本文整理了冯...
程序员该看的几部电影
1、骇客帝国(1999) 概念:在线/离线,递归,循环,矩阵等 剧情简介: 不久的将来,网络黑客尼奥对这个看似正常的现实世界产生了怀疑。 他结识了黑客崔妮蒂,并见到了黑客组织的首领墨菲斯。 墨菲斯告诉他,现实世界其实是由一个名叫“母体”的计算机人工智能系统控制,人们就像他们饲养的动物,没有自由和思想,而尼奥就是能够拯救人类的救世主。 可是,救赎之路从来都不会一帆风顺,到底哪里才是真实的世界?如何...
Python绘图,圣诞树,花,爱心 | Turtle篇
每周每日,分享Python实战代码,入门资料,进阶资料,基础语法,爬虫,数据分析,web网站,机器学习,深度学习等等。 公众号回复【进群】沟通交流吧,QQ扫码进群学习吧 微信群 QQ群 1.画圣诞树 import turtle screen = turtle.Screen() screen.setup(800,600) circle = turtle.Turtle()...
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东...
还记得那个提速8倍的IDEA插件吗?VS Code版本也发布啦!!
去年,阿里云发布了本地 IDE 插件 Cloud Toolkit,仅 IntelliJ IDEA 一个平台,就有 15 万以上的开发者进行了下载,体验了一键部署带来的开发便利。时隔一年的今天,阿里云正式发布了 Visual Studio Code 版本,全面覆盖前端开发者,帮助前端实现一键打包部署,让开发提速 8 倍。 VSCode 版本的插件,目前能做到什么? 安装插件之后,开发者可以立即体验...
破14亿,Python分析我国存在哪些人口危机!
一、背景 二、爬取数据 三、数据分析 1、总人口 2、男女人口比例 3、人口城镇化 4、人口增长率 5、人口老化(抚养比) 6、各省人口 7、世界人口 四、遇到的问题 遇到的问题 1、数据分页,需要获取从1949-2018年数据,观察到有近20年参数:LAST20,由此推测获取近70年的参数可设置为:LAST70 2、2019年数据没有放上去,可以手动添加上去 3、将数据进行 行列转换 4、列名...
2019年除夕夜的有感而发
天气:小雨(加小雪) 温度:3摄氏度 空气:严重污染(399) 风向:北风 风力:微风 现在是除夕夜晚上十点钟,再有两个小时就要新的一年了; 首先要说的是我没患病,至少现在是没有患病;但是心情确像患了病一样沉重; 现在这个时刻应该大部分家庭都在看春晚吧,或许一家人团团圆圆的坐在一起,或许因为某些特殊原因而不能团圆;但不管是身在何处,身处什么境地,我都想对每一个人说一句:新年快乐! 不知道csdn这...
听说想当黑客的都玩过这个Monyer游戏(1~14攻略)
第零关 进入传送门开始第0关(游戏链接) 请点击链接进入第1关: 连接在左边→ ←连接在右边 看不到啊。。。。(只能看到一堆大佬做完的留名,也能看到菜鸡的我,在后面~~) 直接fn+f12吧 &lt;span&gt;连接在左边→&lt;/span&gt; &lt;a href="first.php"&gt;&lt;/a&gt; &lt;span&gt;←连接在右边&lt;/span&gt; o...
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ...... ...
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!...
2020年的1月,我辞掉了我的第一份工作
其实,这篇文章,我应该早点写的,毕竟现在已经2月份了。不过一些其它原因,或者是我的惰性、还有一些迷茫的念头,让自己迟迟没有试着写一点东西,记录下,或者说是总结下自己前3年的工作上的经历、学习的过程。 我自己知道的,在写自己的博客方面,我的文笔很一般,非技术类的文章不想去写;另外我又是一个还比较热衷于技术的人,而平常复杂一点的东西,如果想写文章写的清楚点,是需要足够...
别低估自己的直觉,也别高估自己的智商
所有群全部吵翻天,朋友圈全部沦陷,公众号疯狂转发。这两周没怎么发原创,只发新闻,可能有人注意到了。我不是懒,是文章写了却没发,因为大家的关注力始终在这次的疫情上面,发了也没人看。当然,我...
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。 再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。 下文是原回答,希望能对你能有所启发。 如果我说,这个世界上人真的分三六九等,...
节后首个工作日,企业们集体开晨会让钉钉挂了
By 超神经场景描述:昨天 2 月 3 日,是大部分城市号召远程工作的第一天,全国有接近 2 亿人在家开始远程办公,钉钉上也有超过 1000 万家企业活跃起来。关键词:十一出行 人脸...
Java基础知识点梳理
虽然已经在实际工作中经常与java打交道,但是一直没系统地对java这门语言进行梳理和总结,掌握的知识也比较零散。恰好利用这段时间重新认识下java,并对一些常见的语法和知识点做个总结与回顾,一方面为了加深印象,方便后面查阅,一方面为了掌握好Android打下基础。
2020年全新Java学习路线图,含配套视频,学完即为中级Java程序员!!
新的一年来临,突如其来的疫情打破了平静的生活! 在家的你是否很无聊,如果无聊就来学习吧! 世上只有一种投资只赚不赔,那就是学习!!! 传智播客于2020年升级了Java学习线路图,硬核升级,免费放送! 学完你就是中级程序员,能更快一步找到工作! 一、Java基础 JavaSE基础是Java中级程序员的起点,是帮助你从小白到懂得编程的必经之路。 在Java基础板块中有6个子模块的学...
B 站上有哪些很好的学习资源?
哇说起B站,在小九眼里就是宝藏般的存在,放年假宅在家时一天刷6、7个小时不在话下,更别提今年的跨年晚会,我简直是跪着看完的!! 最早大家聚在在B站是为了追番,再后来我在上面刷欧美新歌和漂亮小姐姐的舞蹈视频,最近两年我和周围的朋友们已经把B站当作学习教室了,而且学习成本还免费,真是个励志的好平台ヽ(.◕ฺˇд ˇ◕ฺ;)ノ 下面我们就来盘点一下B站上优质的学习资源: 综合类 Oeasy: 综合...
相关热词 c#导入fbx c#中屏蔽键盘某个键 c#正态概率密度 c#和数据库登陆界面设计 c# 高斯消去法 c# codedom c#读取cad文件文本 c# 控制全局鼠标移动 c# temp 目录 bytes初始化 c#
立即提问