Lukas00990 2022-06-08 03:45 采纳率: 40.8%
浏览 748
已结题

强化学习,gym.reset()重置环境为什么不是返回一组为0 的数据,而是返回一定范围的数组?

在学习强化学习,为什么强化学习的gym.reset() 返回的是一个不为零的数组,我理解的重置不就是归零吗? 比如
CartPole-v0 环境。为什么def reset()那儿要返回4个-0.05到0.05的随机数呢?
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
super().reset(seed=seed)
** self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
** self.steps_beyond_done = None
if not return_info:
return np.array(self.state, dtype=np.float32)
else:
return np.array(self.state, dtype=np.float32), {}

"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
"""
import math
from typing import Optional, Union

import numpy as np

import gym
from gym import logger, spaces
from gym.error import DependencyNotInstalled


class CartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]):
    """
    ### Description

    This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson in
    ["Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problem"](https://ieeexplore.ieee.org/document/6313077).
    A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track.
    The pendulum is placed upright on the cart and the goal is to balance the pole by applying forces
     in the left and right direction on the cart.

    ### Action Space

    The action is a `ndarray` with shape `(1,)` which can take values `{0, 1}` indicating the direction
     of the fixed force the cart is pushed with.

    | Num | Action                 |
    |-----|------------------------|
    | 0   | Push cart to the left  |
    | 1   | Push cart to the right |

    **Note**: The velocity that is reduced or increased by the applied force is not fixed and it depends on the angle
     the pole is pointing. The center of gravity of the pole varies the amount of energy needed to move the cart underneath it

    ### Observation Space

    The observation is a `ndarray` with shape `(4,)` with the values corresponding to the following positions and velocities:

    | Num | Observation           | Min                 | Max               |
    |-----|-----------------------|---------------------|-------------------|
    | 0   | Cart Position         | -4.8                | 4.8               |
    | 1   | Cart Velocity         | -Inf                | Inf               |
    | 2   | Pole Angle            | ~ -0.418 rad (-24°) | ~ 0.418 rad (24°) |
    | 3   | Pole Angular Velocity | -Inf                | Inf               |

    **Note:** While the ranges above denote the possible values for observation space of each element,
        it is not reflective of the allowed values of the state space in an unterminated episode. Particularly:
    -  The cart x-position (index 0) can be take values between `(-4.8, 4.8)`, but the episode terminates
       if the cart leaves the `(-2.4, 2.4)` range.
    -  The pole angle can be observed between  `(-.418, .418)` radians (or **±24°**), but the episode terminates
       if the pole angle is not in the range `(-.2095, .2095)` (or **±12°**)

    ### Rewards

    Since the goal is to keep the pole upright for as long as possible, a reward of `+1` for every step taken,
    including the termination step, is allotted. The threshold for rewards is 475 for v1.

    ### Starting State

    All observations are assigned a uniformly random value in `(-0.05, 0.05)`

    ### Episode Termination

    The episode terminates if any one of the following occurs:
    1. Pole Angle is greater than ±12°
    2. Cart Position is greater than ±2.4 (center of the cart reaches the edge of the display)
    3. Episode length is greater than 500 (200 for v0)

    ### Arguments

    ```
    gym.make('CartPole-v1')
    ```

    No additional arguments are currently supported.
    """

    metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 50}

    def __init__(self):
        self.gravity = 9.8
        self.masscart = 1.0
        self.masspole = 0.1
        self.total_mass = self.masspole + self.masscart
        self.length = 0.5  # actually half the pole's length
        self.polemass_length = self.masspole * self.length
        self.force_mag = 10.0
        self.tau = 0.02  # seconds between state updates
        self.kinematics_integrator = "euler"

        # Angle at which to fail the episode
        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 2.4

        # Angle limit set to 2 * theta_threshold_radians so failing observation
        # is still within bounds.
        high = np.array(
            [
                self.x_threshold * 2,
                np.finfo(np.float32).max,
                self.theta_threshold_radians * 2,
                np.finfo(np.float32).max,
            ],
            dtype=np.float32,
        )

        self.action_space = spaces.Discrete(2)
        self.observation_space = spaces.Box(-high, high, dtype=np.float32)

        self.screen = None
        self.clock = None
        self.isopen = True
        self.state = None

        self.steps_beyond_done = None

    def step(self, action):
        err_msg = f"{action!r} ({type(action)}) invalid"
        assert self.action_space.contains(action), err_msg
        assert self.state is not None, "Call reset before using step method."
        x, x_dot, theta, theta_dot = self.state
        force = self.force_mag if action == 1 else -self.force_mag
        costheta = math.cos(theta)
        sintheta = math.sin(theta)

        # For the interested reader:
        # https://coneural.org/florian/papers/05_cart_pole.pdf
        temp = (
            force + self.polemass_length * theta_dot**2 * sintheta
        ) / self.total_mass
        thetaacc = (self.gravity * sintheta - costheta * temp) / (
            self.length * (4.0 / 3.0 - self.masspole * costheta**2 / self.total_mass)
        )
        xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass

        if self.kinematics_integrator == "euler":
            x = x + self.tau * x_dot
            x_dot = x_dot + self.tau * xacc
            theta = theta + self.tau * theta_dot
            theta_dot = theta_dot + self.tau * thetaacc
        else:  # semi-implicit euler
            x_dot = x_dot + self.tau * xacc
            x = x + self.tau * x_dot
            theta_dot = theta_dot + self.tau * thetaacc
            theta = theta + self.tau * theta_dot

        self.state = (x, x_dot, theta, theta_dot)

        done = bool(
            x < -self.x_threshold
            or x > self.x_threshold
            or theta < -self.theta_threshold_radians
            or theta > self.theta_threshold_radians
        )

        if not done:
            reward = 1.0
        elif self.steps_beyond_done is None:
            # Pole just fell!
            self.steps_beyond_done = 0
            reward = 1.0
        else:
            if self.steps_beyond_done == 0:
                logger.warn(
                    "You are calling 'step()' even though this "
                    "environment has already returned done = True. You "
                    "should always call 'reset()' once you receive 'done = "
                    "True' -- any further steps are undefined behavior."
                )
            self.steps_beyond_done += 1
            reward = 0.0

        return np.array(self.state, dtype=np.float32), reward, done, {}

    def reset(
        self,
        *,
        seed: Optional[int] = None,
        return_info: bool = False,
        options: Optional[dict] = None,
    ):
        super().reset(seed=seed)
        self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
        self.steps_beyond_done = None
        if not return_info:
            return np.array(self.state, dtype=np.float32)
        else:
            return np.array(self.state, dtype=np.float32), {}

    def render(self, mode="human"):
        try:
            import pygame
            from pygame import gfxdraw
        except ImportError:
            raise DependencyNotInstalled(
                "pygame is not installed, run `pip install gym[classic_control]`"
            )

        screen_width = 600
        screen_height = 400

        world_width = self.x_threshold * 2
        scale = screen_width / world_width
        polewidth = 10.0
        polelen = scale * (2 * self.length)
        cartwidth = 50.0
        cartheight = 30.0

        if self.state is None:
            return None

        x = self.state

        if self.screen is None:
            pygame.init()
            pygame.display.init()
            self.screen = pygame.display.set_mode((screen_width, screen_height))
        if self.clock is None:
            self.clock = pygame.time.Clock()

        self.surf = pygame.Surface((screen_width, screen_height))
        self.surf.fill((255, 255, 255))

        l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
        axleoffset = cartheight / 4.0
        cartx = x[0] * scale + screen_width / 2.0  # MIDDLE OF CART
        carty = 100  # TOP OF CART
        cart_coords = [(l, b), (l, t), (r, t), (r, b)]
        cart_coords = [(c[0] + cartx, c[1] + carty) for c in cart_coords]
        gfxdraw.aapolygon(self.surf, cart_coords, (0, 0, 0))
        gfxdraw.filled_polygon(self.surf, cart_coords, (0, 0, 0))

        l, r, t, b = (
            -polewidth / 2,
            polewidth / 2,
            polelen - polewidth / 2,
            -polewidth / 2,
        )

        pole_coords = []
        for coord in [(l, b), (l, t), (r, t), (r, b)]:
            coord = pygame.math.Vector2(coord).rotate_rad(-x[2])
            coord = (coord[0] + cartx, coord[1] + carty + axleoffset)
            pole_coords.append(coord)
        gfxdraw.aapolygon(self.surf, pole_coords, (202, 152, 101))
        gfxdraw.filled_polygon(self.surf, pole_coords, (202, 152, 101))

        gfxdraw.aacircle(
            self.surf,
            int(cartx),
            int(carty + axleoffset),
            int(polewidth / 2),
            (129, 132, 203),
        )
        gfxdraw.filled_circle(
            self.surf,
            int(cartx),
            int(carty + axleoffset),
            int(polewidth / 2),
            (129, 132, 203),
        )

        gfxdraw.hline(self.surf, 0, screen_width, carty, (0, 0, 0))

        self.surf = pygame.transform.flip(self.surf, False, True)
        self.screen.blit(self.surf, (0, 0))
        if mode == "human":
            pygame.event.pump()
            self.clock.tick(self.metadata["render_fps"])
            pygame.display.flip()

        if mode == "rgb_array":
            return np.transpose(
                np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
            )
        else:
            return self.isopen

    def close(self):
        if self.screen is not None:
            import pygame

            pygame.display.quit()
            pygame.quit()
            self.isopen = False


  • 写回答

1条回答 默认 最新

  • 溪风沐雪 2022-06-08 14:12
    关注

    一般情况下reset()就是重新初始化环境,除非你需要获取初始化时产生的某些参数,那就要有返回值,如果仅仅是初始化的话,完全可以不设返回值,你这4个随机数就更没必要了

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论

报告相同问题?

问题事件

  • 系统已结题 6月17日
  • 已采纳回答 6月9日
  • 创建了问题 6月8日

悬赏问题

  • ¥15 关于#网络#的问题:网络是从楼上引一根网线下来,接了2台傻瓜交换机,也更换了ip还是不行
  • ¥15 资源泄露软件闪退怎么解决?
  • ¥15 CCF-CSP 2023 第三题 解压缩(50%)
  • ¥30 comfyui openpose报错
  • ¥20 Wpf Datarid单元格闪烁效果的实现
  • ¥15 图像分割、图像边缘提取
  • ¥15 sqlserver执行存储过程报错
  • ¥100 nuxt、uniapp、ruoyi-vue 相关发布问题
  • ¥15 浮窗和全屏应用同时存在,全屏应用输入法无法弹出
  • ¥100 matlab2009 32位一直初始化