请问下大家tensorflow中的probability在pytorch中有没有对应的包,我非科班学了好久pytorch,结果发现probability中的convolution1dflipout在pytorch中找不到😭
3条回答 默认 最新
- PellyKoo 2023-03-15 09:53关注
pytorch里面还没有与convolution1dflipout相对应的卷积层,你要不然就结合pyro这种概率编程库自己实现这个层,要不然就要用pytorch里的自定义层的功能自己实现。
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter # 定义 Conv1dFlipout 层 class Conv1dFlipout(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(Conv1dFlipout, self).__init__() # 初始化各种参数 self.in_channels = in_channels # 输入通道数 self.out_channels = out_channels # 输出通道数 self.kernel_size = kernel_size # 卷积核大小 self.stride = stride # 步幅 self.padding = padding # 填充 self.dilation = dilation # 空洞 self.groups = groups # 分组卷积 self.bias = bias # 是否使用偏置项 # 定义权重均值和对数标准差,这些参数是需要学习的 self.weight_mean = Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size)) self.weight_logstd = Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size)) # 定义偏置项的均值和对数标准差,这些参数是需要学习的 if bias: self.bias_mean = Parameter(torch.Tensor(out_channels)) self.bias_logstd = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias_mean', None) self.register_parameter('bias_logstd', None) # 重置各个参数的初始值 self.reset_parameters() # 重置各个参数的初始值 def reset_parameters(self): nn.init.kaiming_uniform_(self.weight_mean, a=math.sqrt(5)) nn.init.constant_(self.weight_logstd, -10) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_mean) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias_mean, -bound, bound) nn.init.constant_(self.bias_logstd, -10) # 定义前向传播函数 def forward(self, x): weight_epsilon = torch.randn(self.weight_mean.shape).to(x.device) weight = self.weight_mean + weight_epsilon * torch.exp(self.weight_logstd) if self.bias is not None: bias_epsilon = torch.randn(self.bias_mean.shape).to(x.device) bias = self.bias_mean + bias_epsilon * torch.exp(self.bias_logstd) else: bias = None # 获取输入和权重的维度 batch_size, input_channels, input_length = x.size() output_channels, _, kernel_size = weight.size() # 计算输出的维度 output_length = (input_length + 2 * self.padding - dilation * (kernel_size - 1) - 1) // self.stride + 1 # 将输入和权重张量重塑为卷积运算所需的形状 x = x.view(batch_size, input_channels // self.groups, self.groups, input_length) weight = weight.view(output_channels, input_channels // self.groups, self.groups, kernel_size) # 使用groups进行卷积运算 output = F.conv1d(x, weight, bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) # 将输出张量重塑为卷积运算输出的形状 output = output.view(batch_size, output_channels, output_length) return output
一个新的卷积结构就要重定义一个新的卷积层,这还是其中一个示例。所以说,既然这么麻烦,算了还不如直接调用tensorflow现成的
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报 编辑记录
悬赏问题
- ¥15 如何获取APP内弹出的网址链接
- ¥15 wifi 图标不见了 不知道怎么办 上不了网 变成小地球了
- ¥50 STM32单片机传感器读取错误
- ¥50 power BI 从Mysql服务器导入数据,但连接进去后显示表无数据
- ¥15 (关键词-阻抗匹配,HFSS,RFID标签)
- ¥50 sft下载大文阻塞卡死
- ¥15 机器人轨迹规划相关问题
- ¥15 word样式右侧翻页键消失
- ¥15 springboot+vue 集成keycloak sso到阿里云
- ¥15 win7系统进入桌面过一秒后突然黑屏