基于Pytorch框架的Bert模型中文文本分类,输出结果是如下图所示的张量Tensor([151])等,我的分类类别是0、1,一直到6这样的数字标签,请问怎么从输出的张量结果看对应的预测类别标签?
这样输出的结果是正确的吗?
谢谢回答的大家!

部分模型引用代码如下:
with open('data_for_classify.txt','r',encoding='utf-8') as f:
for line in f.readlines():
new_sentences = line.strip()
input_ids, seq_len, attention_mask = preprocess(new_sentences)
preprocessed_sentences = preprocess(new_sentences)
logits = bert_model.forward(preprocessed_sentences[0], attention_mask=preprocessed_sentences[2])[1]
#preprocessed_sentences = preprocess(new_sentences)
#logits = bert_model.forward()
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_classes = torch.argmax(probabilities, dim=-1)
print(predicted_classes)