这些红线是怎么回事?如何正确修改?

这个报错如何修改呢?
import tensorflow as tf
import keras
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, SimpleRNN
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# 加载数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train = x_train.reshape(-1, 28*28) / 255.0
x_test = x_test.reshape(-1, 28*28) / 255.0
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
# 划分训练集和测试集
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=42)
# 构建DNN模型
model_dnn = Sequential([
Dense(128, activation='relu'),
Dense(64, activation='relu'),
Dense(10, activation='softmax')
])
model_dnn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_dnn.fit(x_train, y_train, epochs=5, batch_size=32, validation_data=(x_val, y_val))
# 测试DNN模型
dnn_loss, dnn_accuracy = model_dnn.evaluate(x_test, y_test)
print(f"DNN - Test Accuracy: {dnn_accuracy}")
# 构建CNN模型
x_train_cnn = x_train.reshape(-1, 28, 28, 1)
x_val_cnn = x_val.reshape(-1, 28, 28, 1)
x_test_cnn = x_test.reshape(-1, 28, 28, 1)
model_cnn = Sequential([
Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
MaxPooling2D((2,2)),
Conv2D(64, (3,3), activation='relu'),
MaxPooling2D((2,2)),
Flatten(),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
])
model_cnn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_cnn.fit(x_train_cnn, y_train, epochs=5, batch_size=32, validation_data=(x_val_cnn, y_val))
# 测试CNN模型
cnn_loss, cnn_accuracy = model_cnn.evaluate(x_test_cnn, y_test)
print(f"CNN - Test Accuracy: {cnn_accuracy}")
# 构建RNN模型
x_train_rnn = x_train.reshape(-1, 28, 28)
x_val_rnn = x_val.reshape(-1, 28, 28)
x_test_rnn = x_test.reshape(-1, 28, 28)
model_rnn = Sequential([
SimpleRNN(128, input_shape=(28, 28)),
Dense(10, activation='softmax')
])
model_rnn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_rnn.fit(x_train_rnn, y_train, epochs=5, batch_size=32, validation_data=(x_val_rnn, y_val))
# 测试RNN模型
rnn_loss, rnn_accuracy = model_rnn.evaluate(x_test_rnn, y_test)
print(f"RNN - Test Accuracy: {rnn_accuracy}")