keras中如何对网络的某一层参数进行修改? 5C

例如我使用model.get_layer('inp_layer').get_weights()[0]
获得了这一层的权重,我想手动修改这一层的参数值,如何通过一个赋值操作或者其他操作,把这一层的参数修改成我想要的值呢?

1个回答

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
请问tensorflow或者keras中想在神经网络同一层不同节点中设置不同激活函数该怎么实现?
tensorflow和keras一设置激活函数好像就是会默认设置一整层所有节点都会是同一个激活函数,请问要如何实现同一层不同节点有不同激活函数?
如何利用Keras的函数式模型搭建一个局部连接的卷积神经网络模型?
最近在学习卷积神经网络模型,在对CNN鼻祖LeNet5进行构建时遇到了如下问题: 首先有这样一个连接模式: ![图片说明](https://img-ask.csdn.net/upload/201910/28/1572246925_411564.jpg) 需要由S2层的6个特征图谱生成C3层的16个特征图谱,但这16个map并不都是与上一层进行全连接卷积求和得到的 例如C3的map1只与S2的map1,2,3进行局部连接,卷积求和在加上一个bias就得到了C3的第一个特征图谱 那么这样的连接模式怎么使用Keras来表示呢? 首先考虑最简单的序贯模型,发现并没有相关的API可以用来指定上一层的某一部分特征图作为一下层的输入(也许是我没发现),然后考虑函数式模型: ``` import keras from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten from keras.models import Model input_LeNet5=Input(shape=(32,32,1)) c1=Conv2D(6,(5,5))(input_LeNet5) s2=MaxPooling2D((2,2))(c1) print(np.shape(s2)) ``` 这里我搭建出了LeNet5的前两层,并打印出了S2的形状,是一个(?,14,14,6)的张量,这里的6显然就是代表了S2中6张不同的map ``` TensorShape([Dimension(None), Dimension(14), Dimension(14), Dimension(6)]) ``` 那么是不是就可以考虑对张量的最后一维进行切片,如下,将S21作为c31的输入,代码是可以编译通过的 ``` s21=s2[:,:,:,0:3] c31=Conv2D(1,(5,5))(S21) ``` 但是最后调用Model对整个模型进行编译时就出错了 ``` model = Model(inputs=input_LeNet5, outputs=C31) ``` ``` AttributeError: 'NoneType' object has no attribute '_inbound_nodes' ``` 经过测试发现只要是对上一层的输入进行切片就会出现这样的问题,猜测是切片使得S21丢失了S2的数据类型以及属性 看了很多别人搭建的模型也没有涉及这一操作的,keras文档也没有相关描述。 特来请教有没有大牛搭建过类似的模型,不用keras也行
keras安装与环境配置,按照keras中文文档一步一步来的,最后安装有问题,也看不懂说是啥,求教!
![图片说明](https://img-ask.csdn.net/upload/201702/22/1487771794_330857.png)有人遇到这种情况吗,keras安装与环境配置,按照keras中文文档一步一步来的,最后安装有问题,也看不懂说是啥,求教!
基于keras写的模型中自定义的函数(如损失函数)如何保存到模型中?
```python batch_size = 128 original_dim = 100 #25*4 latent_dim = 16 # z的维度 intermediate_dim = 256 # 中间层的维度 nb_epoch = 50 # 训练轮数 epsilon_std = 1.0 # 重参数 #my tips:encoding x = Input(batch_shape=(batch_size,original_dim)) h = Dense(intermediate_dim, activation='relu')(x) z_mean = Dense(latent_dim)(h) # mu z_log_var = Dense(latent_dim)(h) # sigma #my tips:Gauss sampling,sample Z def sampling(args): # 重采样 z_mean, z_log_var = args epsilon = K.random_normal(shape=(128, 16), mean=0., stddev=1.0) return z_mean + K.exp(z_log_var / 2) * epsilon # note that "output_shape" isn't necessary with the TensorFlow backend # my tips:get sample z(encoded) z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var]) # we instantiate these layers separately so as to reuse them later decoder_h = Dense(intermediate_dim, activation='relu') # 中间层 decoder_mean = Dense(original_dim, activation='sigmoid') # 输出层 h_decoded = decoder_h(z) x_decoded_mean = decoder_mean(h_decoded) #my tips:loss(restruct X)+KL def vae_loss(x, x_decoded_mean): xent_loss = original_dim * objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return xent_loss + kl_loss vae = Model(x, x_decoded_mean) vae.compile(optimizer='rmsprop', loss=vae_loss) vae.fit(x_train, x_train, shuffle=True, epochs=nb_epoch, verbose=2, batch_size=batch_size, validation_data=(x_valid, x_valid)) vae.save(path+'//VAE.h5') ``` 一段搭建VAE结构的代码,在保存模型后调用时先是出现了sampling中一些全局变量未定义的问题,将变量改为确定数字后又出现了vae_loss函数未定义的问题(unknown loss function: vae_loss) 个人认为是模型中自定义的函数在保存上出现问题,但是也不知道怎么解决。刚刚上手keras和tensorflow这些框架,很多问题是第一次遇到,麻烦大神们帮帮忙!感谢!
保存keras模型时出现的问题
求助各路大神,小弟最近用keras跑神经网络模型,在训练和测试时都很好没问题,但是在保存时出现问题 小弟保存模型用的语句: json_string = model.to_json() open('my_model_architecture.json', 'w').write(json_string) #保存网络结构 model.save_weights('my_model_weights.h5',overwrite='true') #保存权重 但是运行后会显示Process finished with exit code -1073741819 (0xC0000005) 然后保存权重的.h5文件没有内容 求助各位大神是怎么回事啊
Keras使用Lambda搭建最后一层的时候出错,望指教?
前几天使用Keras搭建一个卷积神经网络用于目标检测,特征提取器使用的是Resnet 50,使用Lambda层来构建最后的loss层,loss公式是借鉴的yolo v3的源代码稍加修改, 但是一运行就报Tensor objects are only iterable when eager execution is enabled. To iterate over this tensor use tf.map_fn. 这个错误,下面是我的代码: ![红线就是报错的地方](https://img-ask.csdn.net/upload/201908/27/1566870325_210092.png) ![报错信息](https://img-ask.csdn.net/upload/201908/27/1566870355_660105.png) 希望各位前辈多多指教
利用keras搭建神经网络,怎样记录每一轮epoch的时间,和训练的总时间?
神经网络就是一个简单的lstm神经网络,调用了keras模块,现在想比较不同训练方法的效率,如何在训练完成后显示每一步训练以及最后训练完的总时间?
keras进行自定义层时如何使用一个核与上一层的所有feature map做运算??
rt 比如说,我想自定义一个层,用一个核来跟上一层的特征图中的32个二维矩阵分别卷积,要怎么实现?假如有代码示例就最好啦 假如说输入是(batch_size,height,width,channel),这边的batch_size这一维要怎么处理?
用keras构建了一个简单神经网络,loss一直卡在0.69不动
试过了改变lr,改变optimizer,权重初始化也有了,但是loss一直卡在0.69,用softmax做了一个二元分类,求大牛帮忙看一下,谢谢!
tf.keras 关于 胶囊网络 capsule的问题
``` from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer from tensorflow.keras import activations from tensorflow.keras import utils from tensorflow.keras.models import Model from tensorflow.keras.layers import * from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import TensorBoard import mnist import tensorflow batch_size = 128 num_classes = 10 epochs = 20 """ 压缩函数,我们使用0.5替代hinton论文中的1,如果是1,所有的向量的范数都将被缩小。 如果是0.5,小于0.5的范数将缩小,大于0.5的将被放大 """ def squash(x, axis=-1): s_quared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon() scale = K.sqrt(s_quared_norm) / (0.5 + s_quared_norm) result = scale * x return result # 定义我们自己的softmax函数,而不是K.softmax.因为K.softmax不能指定轴 def softmax(x, axis=-1): ex = K.exp(x - K.max(x, axis=axis, keepdims=True)) result = ex / K.sum(ex, axis=axis, keepdims=True) return result # 定义边缘损失,输入y_true, p_pred,返回分数,传入即可fit时候即可 def margin_loss(y_true, y_pred): lamb, margin = 0.5, 0.1 result = K.sum(y_true * K.square(K.relu(1 - margin -y_pred)) + lamb * (1-y_true) * K.square(K.relu(y_pred - margin)), axis=-1) return result class Capsule(Layer): """编写自己的Keras层需要重写3个方法以及初始化方法 1.build(input_shape):这是你定义权重的地方。 这个方法必须设self.built = True,可以通过调用super([Layer], self).build()完成。 2.call(x):这里是编写层的功能逻辑的地方。 你只需要关注传入call的第一个参数:输入张量,除非你希望你的层支持masking。 3.compute_output_shape(input_shape): 如果你的层更改了输入张量的形状,你应该在这里定义形状变化的逻辑,这让Keras能够自动推断各层的形状。 4.初始化方法,你的神经层需要接受的参数 """ def __init__(self, num_capsule, dim_capsule, routings=3, share_weights=True, activation='squash', **kwargs): super(Capsule, self).__init__(**kwargs) # Capsule继承**kwargs参数 self.num_capsule = num_capsule self.dim_capsule = dim_capsule self.routings = routings self.share_weights = share_weights if activation == 'squash': self.activation = squash else: self.activation = activation.get(activation) # 得到激活函数 # 定义权重 def build(self, input_shape): input_dim_capsule = input_shape[-1] if self.share_weights: # 自定义权重 self.kernel = self.add_weight( name='capsule_kernel', shape=(1, input_dim_capsule, self.num_capsule * self.dim_capsule), initializer='glorot_uniform', trainable=True) else: input_num_capsule = input_shape[-2] self.kernel = self.add_weight( name='capsule_kernel', shape=(input_num_capsule, input_dim_capsule, self.num_capsule * self.dim_capsule), initializer='glorot_uniform', trainable=True) super(Capsule, self).build(input_shape) # 必须继承Layer的build方法 # 层的功能逻辑(核心) def call(self, inputs): if self.share_weights: hat_inputs = K.conv1d(inputs, self.kernel) else: hat_inputs = K.local_conv1d(inputs, self.kernel, [1], [1]) batch_size = K.shape(inputs)[0] input_num_capsule = K.shape(inputs)[1] hat_inputs = K.reshape(hat_inputs, (batch_size, input_num_capsule, self.num_capsule, self.dim_capsule)) hat_inputs = K.permute_dimensions(hat_inputs, (0, 2, 1, 3)) b = K.zeros_like(hat_inputs[:, :, :, 0]) for i in range(self.routings): c = softmax(b, 1) o = self.activation(K.batch_dot(c, hat_inputs, [2, 2])) if K.backend() == 'theano': o = K.sum(o, axis=1) if i < self.routings-1: b += K.batch_dot(o, hat_inputs, [2, 3]) if K.backend() == 'theano': o = K.sum(o, axis=1) return o def compute_output_shape(self, input_shape): # 自动推断shape return (None, self.num_capsule, self.dim_capsule) def MODEL(): input_image = Input(shape=(32, 32, 3)) x = Conv2D(64, (3, 3), activation='relu')(input_image) x = Conv2D(64, (3, 3), activation='relu')(x) x = AveragePooling2D((2, 2))(x) x = Conv2D(128, (3, 3), activation='relu')(x) x = Conv2D(128, (3, 3), activation='relu')(x) """ 现在我们将它转换为(batch_size, input_num_capsule, input_dim_capsule),然后连接一个胶囊神经层。模型的最后输出是10个维度为16的胶囊网络的长度 """ x = Reshape((-1, 128))(x) # (None, 100, 128) 相当于前一层胶囊(None, input_num, input_dim) capsule = Capsule(num_capsule=10, dim_capsule=16, routings=3, share_weights=True)(x) # capsule-(None,10, 16) output = Lambda(lambda z: K.sqrt(K.sum(K.square(z), axis=2)))(capsule) # 最后输出变成了10个概率值 model = Model(inputs=input_image, output=output) return model if __name__ == '__main__': # 加载数据 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) # 加载模型 model = MODEL() model.compile(loss=margin_loss, optimizer='adam', metrics=['accuracy']) model.summary() tfck = TensorBoard(log_dir='capsule') # 训练 data_augmentation = True if not data_augmentation: print('Not using data augmentation.') model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), callbacks=[tfck], shuffle=True) else: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by dataset std samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=0, # randomly rotate images in 0 to 180 degrees width_shift_range=0.1, # randomly shift images horizontally height_shift_range=0.1, # randomly shift images vertically horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow(). model.fit_generator( datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_test, y_test), callbacks=[tfck], workers=4) ``` 以上为代码 运行后出现该问题 ![图片说明](https://img-ask.csdn.net/upload/201902/26/1551184741_476774.png) ![图片说明](https://img-ask.csdn.net/upload/201902/26/1551184734_845838.png) 用官方的胶囊网络keras实现更改为tf下的keras实现仍出现该错误。
keras2能不能进行更加灵活的计算。
在用keras编写神经网络的时候,比如我走输入input,标签labels,我不想直接算model.fit(input.labels)。而是想输input过神经网络输出的结果进行额外的计算,然后再和标签做fit。我应该怎么做。
keras怎么改输入的维度
是一个多分类问题,我现在读取出来的数据input.shape=(40000,1,576,2) 我想让它最后的层unit是8。 请问我应该怎么加一些代码呢
Ubuntu系统keras如何修改默认学习率
最近编程遇到关于学习率的问题,查找资料已知keras学习率默认值为0.01,想修改这个默认值,网络上说修改keras安装路径下optimizer.py文件即可,但是optimizer.py文件有好几个,不知修改哪一个?求高人指点迷津。
训练dnn网络,添加全连接层,keras报错
![图片说明](https://img-ask.csdn.net/upload/201804/09/1523244974_485144.png) 更改了keras的版本号,依然报错
sklearn和keras中的数据集分割问题
用sklearn的train_test_split分割了数据集后还有没有必要在keras里的model.fit()里面用validation_split分割
用keras搭建BP神经网络对数据集进行回归预测,效果和同学的相比很差,麻烦大神指点。新手小白。。。
数据集是csv文件,一共十三列,十几万行,第十三列是要预测的值。 试过很多种方法(都是百度的),包括更改网络层数、 节点数,学习率……,效果都没什么提升 不知道问题出在哪里,请大神指点。 import numpy as np import keras as ks from keras.models import Sequential from sklearn import preprocessing from sklearn.model_selection import train_test_split from keras.layers import Dense, Activation,Dropout x_yuan = np.loadtxt(open("shaixuandata.csv","rb"),\ usecols=(range(12)),delimiter=",",skiprows=1) x = preprocessing.scale(x_yuan) y = np.loadtxt(open("shaixuandata.csv","rb"),\ usecols=(12),delimiter=",",skiprows=1) x_train, x_test, y_train, y_test = train_test_split(\ x, y, test_size=0.25, random_state=43) model = Sequential() model.add(Dense(units=30, input_dim=12)) model.add(Activation('relu')) model.add(Dropout(0.1)) model.add(Dense(units=1)) model.add(Activation('linear')) ks.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, \ patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) sgd = ks.optimizers.SGD(lr=0.001, clipnorm=1.,decay=1e-6, momentum=0.9) model.compile(optimizer='sgd', loss='mae', metrics=['mae']) model.fit(x_train, y_train, batch_size=30, epochs=3, callbacks=None, \ validation_data=(x_test,y_test), shuffle=True, class_weight=None, \ sample_weight=None, initial_epoch=0) predict = model.predict(x_test) sum = 0 for i in range(len(y_test)): sum = sum+(y_test[i]-predict[i])**2 mse = sum/len(y_test) print(mse) ![训练的结果是这样的,老实说训练结果太差](https://img-ask.csdn.net/upload/201806/27/1530098555_142017.png)
关于keras中input_shape参数设定
在input shape中有三个参数,smaples/timesteps/dim,假设我现在有3000个数据,每个数据6个feature,然后我设置5个batch,那batchsize = 3000/5 = 600,接下来设置input参数,samples = 20,dim = 6 (因为有6个feature),timesteps = 30 (samples x tiemsteps = batchsize) 这样理解是否正确?谢谢
keras 训练网络时出现ValueError
rt 使用keras中的model.fit函数进行训练时出现错误:ValueError: None values not supported. 错误信息如下: ``` File "C:/Users/Desktop/MNISTpractice/mnist.py", line 93, in <module> model.fit(x_train,y_train, epochs=2, callbacks=callback_list,validation_data=(x_val,y_val)) File "C:\Anaconda3\lib\site-packages\keras\engine\training.py", line 1575, in fit self._make_train_function() File "C:\Anaconda3\lib\site-packages\keras\engine\training.py", line 960, in _make_train_function loss=self.total_loss) File "C:\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 87, in wrapper return func(*args, **kwargs) File "C:\Anaconda3\lib\site-packages\keras\optimizers.py", line 432, in get_updates m_t = (self.beta_1 * m) + (1. - self.beta_1) * g File "C:\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 820, in binary_op_wrapper y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 639, in convert_to_tensor as_ref=False) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 704, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 113, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 102, in constant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 360, in make_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. ```
keras如何搭建跨层神经网络
![图片说明](https://img-ask.csdn.net/upload/201903/09/1552124777_957866.png)
爬虫福利二 之 妹子图网MM批量下载
爬虫福利一:27报网MM批量下载    点击 看了本文,相信大家对爬虫一定会产生强烈的兴趣,激励自己去学习爬虫,在这里提前祝:大家学有所成! 目标网站:妹子图网 环境:Python3.x 相关第三方模块:requests、beautifulsoup4 Re:各位在测试时只需要将代码里的变量 path 指定为你当前系统要保存的路径,使用 python xxx.py 或IDE运行即可。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、PDF搜索网站推荐 对于大部
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入  假设现有4个人
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
写在前面: 我是 扬帆向海,这个昵称来源于我的名字以及女朋友的名字。我热爱技术、热爱开源、热爱编程。技术是开源的、知识是共享的。 这博客是对自己学习的一点点总结及记录,如果您对 Java、算法 感兴趣,可以关注我的动态,我们一起学习。 用知识改变命运,让我们的家人过上更好的生活。 目录一、杨辉三角的介绍二、杨辉三角的算法思想三、代码实现1.第一种写法2.第二种写法 一、杨辉三角的介绍 百度
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
JDK12 Collectors.teeing 你真的需要了解一下
前言在 Java 12 里面有个非常好用但在官方 JEP 没有公布的功能,因为它只是 Collector 中的一个小改动,它的作用是 merge 两个 collector 的结果,这句话
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看
SQL-小白最佳入门sql查询一
一 说明 如果是初学者,建议去网上寻找安装Mysql的文章安装,以及使用navicat连接数据库,以后的示例基本是使用mysql数据库管理系统; 二 准备前提 需要建立一张学生表,列分别是id,名称,年龄,学生信息;本示例中文章篇幅原因SQL注释略; 建表语句: CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // dosho
【图解经典算法题】如何用一行代码解决约瑟夫环问题
约瑟夫环问题算是很经典的题了,估计大家都听说过,然后我就在一次笔试中遇到了,下面我就用 3 种方法来详细讲解一下这道题,最后一种方法学了之后保证让你可以让你装逼。 问题描述:编号为 1-N 的 N 个士兵围坐在一起形成一个圆圈,从编号为 1 的士兵开始依次报数(1,2,3…这样依次报),数到 m 的 士兵会被杀死出列,之后的士兵再从 1 开始报数。直到最后剩下一士兵,求这个士兵的编号。 1、方
致 Python 初学者
文章目录1. 前言2. 明确学习目标,不急于求成,不好高骛远3. 在开始学习 Python 之前,你需要做一些准备2.1 Python 的各种发行版2.2 安装 Python2.3 选择一款趁手的开发工具3. 习惯使用IDLE,这是学习python最好的方式4. 严格遵从编码规范5. 代码的运行、调试5. 模块管理5.1 同时安装了py2/py35.2 使用Anaconda,或者通过IDE来安装模
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,
程序员:我终于知道post和get的区别
IT界知名的程序员曾说:对于那些月薪三万以下,自称IT工程师的码农们,其实我们从来没有把他们归为我们IT工程师的队伍。他们虽然总是以IT工程师自居,但只是他们一厢情愿罢了。 此话一出,不知激起了多少(码农)程序员的愤怒,却又无可奈何,于是码农问程序员。 码农:你知道get和post请求到底有什么区别? 程序员:你看这篇就知道了。 码农:你月薪三万了? 程序员:嗯。 码农:你是怎么做到的? 程序员:
GitHub标星近1万:只需5秒音源,这个网络就能实时“克隆”你的声音
作者 | Google团队译者 | 凯隐编辑 | Jane出品 | AI科技大本营(ID:rgznai100)本文中,Google 团队提出了一种文本语音合成(text to speech)神经系统,能通过少量样本学习到多个不同说话者(speaker)的语音特征,并合成他们的讲话音频。此外,对于训练时网络没有接触过的说话者,也能在不重新训练的情况下,仅通过未知说话者数秒的音频来合成其讲话音频,即网
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
      11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI 算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC
【技巧总结】位运算装逼指南
位算法的效率有多快我就不说,不信你可以去用 10 亿个数据模拟一下,今天给大家讲一讲位运算的一些经典例子。不过,最重要的不是看懂了这些例子就好,而是要在以后多去运用位运算这些技巧,当然,采用位运算,也是可以装逼的,不信,你往下看。我会从最简单的讲起,一道比一道难度递增,不过居然是讲技巧,那么也不会太难,相信你分分钟看懂。 判断奇偶数 判断一个数是基于还是偶数,相信很多人都做过,一般的做法的代码如下
【管理系统课程设计】美少女手把手教你后台管理
【后台管理系统】URL设计与建模分析+项目源码+运行界面 栏目管理、文章列表、用户管理、角色管理、权限管理模块(文章最后附有源码) 一、这是一个什么系统? 1.1 学习后台管理系统的原因 随着时代的变迁,现如今各大云服务平台横空出世,市面上有许多如学生信息系统、图书阅读系统、停车场管理系统等的管理系统,而本人家里就有人在用烟草销售系统,直接在网上完成挑选、购买与提交收货点,方便又快捷。 试想,
4G EPS 第四代移动通信系统
目录 文章目录目录4G EPSEPS 的架构EPS 的参考模型E-UTRANUEeNodeBEPCMME(移动性控制处理单元)S-GW(E-RAB 无线访问承载接入点)P-GW(PDN 接入点)HSS(用户认证中心)PCRF(计费规则与策略)SPR(用户档案)OCS(在线计费)OFCS(离线计费)接口类型Uu 接口(空中接口,UE 和 AN 之间)S1 接口(AN 和 CN 之间)S1-U 接口和
相关热词 c# 二进制截断字符串 c#实现窗体设计器 c#检测是否为微信 c# plc s1200 c#里氏转换原则 c# 主界面 c# do loop c#存为组套 模板 c# 停掉协程 c# rgb 读取图片
立即提问