如何解决ValueError: Length mismatch: Expected axis has 20 elements, new values have 19 elements

图片说明
代码如下:
import numpy as np
import pandas as pd
from GM11 import GM11
inputfile = 'D:\软件\python\《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码\《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码\数据及代码\chapter13\test\data\data1.csv' #输入的数据文件
outputfile = 'D:\软件\python\《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码\《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码\数据及代码\chapter13\test\data\data1_GM11.xls' #灰色预测后保存的路径
data = pd.read_csv('D:\软件\python\《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码\《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码\数据及代码\chapter13\test\data\data1.csv',engine='python') #读取数据
data.index = range(1993, 2012)
data.loc[2013] = None
data.loc[2014] = None
l = ['x1', 'x2', 'x3', 'x4', 'x5', 'x7']
for i in l:
f = GM11(data[i][arange(1993, 2012)].as_matrix())[0]
data[i][2013] = f(len(data)-1) #2013年预测结果
data[i][2014] = f(len(data)) #2014年预测结果
data[i] = data[i].round(2) #保留两位小数
data[l+['y']].to_excel(outputfile) #结果输出
if (C < 0.35 and P > 0.95): # 评测后验差判别
print ('对于模型%s,该模型精度为---好' % i)
elif (C < 0.5 and P > 0.8):
print ('对于模型%s,该模型精度为---合格' % i)
elif (C < 0.65 and P > 0.7):
print ('对于模型%s,该模型精度为---勉强合格' % i)
else:
print ('对于模型%s,该模型精度为---不合格' % i)

2个回答

他都告诉你了你少了一个元素 data.index = range(1993, 2012) 这里错了 好好数数

weixin_43125241
韦奕帆 对的,问题解决啦感谢
3 个月之前 回复

对于编程新手来说,这种错误非常普遍。

它确切说明了所陈述的内容。 您期望的数据结构(列表,数组等您命名的)具有20个元素,但是新数据具有19个元素。 换句话说,在元素数彼此相等之前,您无法将一种数据结构打包到另一种数据结构中(在您的情况下为20个元素)。

请学习如何使用dir(),print()和type()函数在Python中调试(研究变量)-这些是您必须了解的基本函数。

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
报错Traceback (most recent call last): File... .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1
我是个小菜鸟,在尝试写生成高斯分布的作业时被报错: ``` D:\Anaconda\python.exe "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py" Traceback (most recent call last): File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 20, in <module> y = func(x, mean, std) File "F:/All tasks in BFU/Study abroad/Internship2019.8 in Google/Homework/Course1/Exercise6/exercise6.py", line 15, in func f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 1071, in wrapper index=left.index, name=res_name, dtype=None) File "D:\Anaconda\lib\site-packages\pandas\core\ops.py", line 980, in _construct_result out = left._constructor(result, index=index, dtype=dtype) File "D:\Anaconda\lib\site-packages\pandas\core\series.py", line 262, in __init__ .format(val=len(data), ind=len(index))) ValueError: Length of passed values is 400, index implies 1 Process finished with exit code 1 ``` 我有安装anaconda,但是报错中貌似表明panda这个package的问题。请问大神大佬,我存在什么问题呀应该怎么解决⊙︿⊙,我好像没在网上找到和我一样的问题,不敢和网上的回答一样在命令提示符里输入命令怕搞错(。•́︿•̀。),是我比较菜鸟又急着所以麻烦了!! 附上我的作业代码: ``` import math import pandas as pd import numpy as np import matplotlib.pyplot as plt # import matplotlib.mlab as mlb data = pd.read_csv('example-exercise6.csv') # read file of data # data = data_['time'] mean = data.mean() # average of data std = data.std() # std def func(x, mu, sigma): f = math.exp(-((x - mu) ^ 2)/(2*sigma ^ 2))/(sigma * math.sqrt(2 * math.pi)) return f x = np.arange(60, 100, 0.1) y = func(x, mean, std) plt.plot(x, y) plt.hist(data, bins=10, rwidth=0.9, normed=True) # x = np.arange(145, 155,0.2) # y = normfun(x, mean, std) # plt.plot(x,y,'g',linewidth = 3) # plt.hist(data, bins = 6, color = 'b', alpha=0.5, rwidth = 0.9, normed=True) # plt.title('stakes distribution') # plt.xlabel('stakes time') # plt.ylabel('Probability') plt.show() ``` ( 其中csv文件是:) ``` 87 88 83 83 86 80 84 90 84 80 94 89 76 ```
ValueError: Unknown mat file type, version 0, 0
训练模型导入.mat文件时出现如下错误: ``` ValueError: Unknown mat file type, version 0, 0 ``` 读取文件代码为: ``` np.array(sio.loadmat(image[0][i])['section'], dtype=np.float32) ``` 望大神指教!不胜感激!
ValueError: too many values to unpack (expected 2)
网上说是元素找不到对应的 代码如下: ``` import turtle file=open("C:/Users/jyz_1/Desktop/新建文本文档.txt") file=file.read() lines=file.split("重庆") i=0 lsy=[] for line in lines: #index the temprature inn=line.index('\n')#The first \n inc=line.index("C")#The first C if i==0: tu=int(line[line.find('\n',inn+1)+1:inc])#The second \n if "~" in line: tl=int(line[line.index('~')+1:line.rindex('C')]) else: tl=tu i=i+1 else: fn=line.find('\n',inn+1) tu=int(line[line.find('\n',fn+1)+1:inc])#The third \n if "~" in line: tl=int(line[line.index('~')+1:line.rindex('C')]) else: tl=tu t=(tl+tu)/2#daily average temprature lsy.append(t) #find the date lsx=[] dates=file.split("\n") for date in dates: if "-" in date: if date.replace("-","").isnumeric()==True: p1=date.index('-')#the first - p2=date.find('-',p1+1)#the second - month=date[p1+1:p2] day=date[p2+1:] date_on_x=int(month+day) lsx.append(date_on_x) #draw axis def drawx(): turtle.pu() turtle.goto(-50,-50) turtle.pd() turtle.fd(240) def drawy(): turtle.pu() turtle.goto(-50,-50) turtle.seth(90) turtle.pd() turtle.fd(160) #comment the axis def comx(): turtle.pu() turtle.goto(-50,-65) turtle.seth(0) for i in range(1,13): turtle.write(i) turtle.fd(20) def comy(): turtle.pu() turtle.goto(-75,-50) turtle.seth(90) for i in range(-30,51,10): turtle.write(float(i)) turtle.fd(20) #draw the rainbow def rainbow(): #define the color if t<8: turtle.color("purple") elif 8<=t<12: turtle.color("lightblue") elif 12<=t<22: turtle.color("green") elif 22<=t<28: turtle.color("yellow") elif 28<=t<30: turtle.color("orange") elif t>=30: turtle.color("red") #let's draw! for x,t in lsx,lsy: turtle.pu() turtle.goto(x,t) turtle.pd() turtle.circle(10) drawx() drawy() comx() comy() rainbow() ``` 报错: ``` Traceback (most recent call last): File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python37-32\32rx.py", line 92, in <module> rainbow(t) File "C:\Users\jyz_1\AppData\Local\Programs\Python\Python37-32\32rx.py", line 83, in rainbow for x,t in lsx,lsy: ValueError: too many values to unpack (expected 2) ``` 但是我用len发现lsx,lsy长度相同 也就是说,lsx,lsy中的元素一一对应 那这个报错是怎么回事?
在引入qgis.core时报错ValueError: PyCapsule_GetPointer called with incorrect name
Traceback (most recent call last): File "D:/pyCode/first/index.py", line 1, in <module> from qgis.core import * File "E:\QGIS\apps\qgis\python\qgis\__init__.py", line 78, in <module> import qgis.gui File "E:\QGIS\apps\qgis\python\qgis\gui\__init__.py", line 25, in <module> from qgis._gui import * ValueError: PyCapsule_GetPointer called with incorrect name
python调用cv2.findContours时报错:ValueError: not enough values to unpack (expected 3, got 2)
完整代码如下: ``` import cv2 import numpy as np img = np.zeros((200, 200), dtype=np.uint8) img[50:150, 50:150] = 255 ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) image, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.drawContours(color, contours, -1, (0,255,0), 2) cv2.imshow("contours", color) cv2.waitKey() cv2.destroyAllWindows() ``` 但是cv2.findContours报如下错误: ValueError: not enough values to unpack (expected 3, got 2) python版本为3.6,opencv为4.0.0
错误提示ValueError: unsupported format character
应该是这一段 '''将方法体中的host字段进行替换''' def get_raw_body(self, req, ip): ip = self.get_host_from_url(ip) host_reg = re.compile(r'Host:\s([a-z\.A-Z0-9]+)') host = host_reg.findall(req) if not host or host[0] == '': print ('[-]ERROR MESSAGE!Wrong format for request body') sys.exit() req, num = re.subn(host_reg, "Host: %s", req) return req % ip 错误提示: return req % (ip) ValueError: unsupported format character '{' (0x7b) at index 31 源程序是2.7,我的是3.6,不想卸载去下2.7,为了这一个程序不值得...
xgboost ValueError:特征名不匹配问题;问题背景:天池新人O2O优惠券使用预测
我在增加特征的过程中,发现训练集可以提取的特征但测试集不能提取,比如题目让你提交测试集的预测结果,即“领取优惠券后15天以内的使用情况”,但是训练集在提取特征过程中,我增加了与核销有关的特征,比如“商家优惠券被领取后核销次数”,而测试集去无法提取和训练集相同的这个特征,因为测试集只有优惠券的领取数据。我认为可能是因为不能提取一致的特征才导致训练集和测试集特征不匹配,那么我应该如何解决这个给问题? [以下为问题的具体描述] ``` ValueError: feature_names mismatch: ['Distance', 'is_manjian', 'discount_rate', 'min_cost_of_manjian', 'null_distance', 'week', 'is_weekend', 'week_0', 'week_1', 'week_2', 'week_3', 'week_4', 'week_5', 'week_6', 'simple_User_id_receive_cnt', 'simple_User_id_Coupon_id_receive_cnt', 'simple_User_id_Date_received_receive_cnt', 'simple_User_id_Coupon_id_Date_received_receive_cnt', 'simple_User_id_Coupon_id_Date_received_repeat_receive', 'simple_Merchant_id_received_cnt', 'simple_Merchant_id_hexiao_times', 'simple_Merchant_id_hexiao_rate', 'simple_Merchant_id_label_hexiao_diff_users', 'simple_Merchant_id_label_hexiao_diff_coupons'] ['Distance', 'is_manjian', 'discount_rate', 'min_cost_of_manjian', 'null_distance', 'week', 'is_weekend', 'week_0', 'week_1', 'week_2', 'week_3', 'week_4', 'week_5', 'week_6', 'simple_User_id_receive_cnt', 'simple_User_id_Coupon_id_receive_cnt', 'simple_User_id_Date_received_receive_cnt', 'simple_User_id_Coupon_id_Date_received_receive_cnt', 'simple_User_id_Coupon_id_Date_received_repeat_receive', 'simple_Merchant_id_received_cnt'] expected simple_Merchant_id_label_hexiao_diff_users, simple_Merchant_id_label_hexiao_diff_coupons, simple_Merchant_id_hexiao_rate, simple_Merchant_id_hexiao_times in input data ```
在Cent OS中复现已发表文章的 神经网络训练过程,报错ValueError: low >= high
``` Traceback (most recent call last): File "trainIEEE39LoadSheddingAgent.py", line 139, in <module> env.reset() File "/root/RLGC/src/py/PowerDynSimEnvDef_v3.py", line 251, in reset fault_bus_idx = np.random.randint(0, total_fault_buses)# an integer, in the range of [0, total_bus_num-1] File "mtrand.pyx", line 630, in numpy.random.mtrand.RandomState.randint File "bounded_integers.pyx", line 1228, in numpy.random.bounded_integers._rand_int64 ValueError: low >= high ``` 报错如上,为什么会这样报错?如何解决?谢谢!
python操作word报错ValueError: can only parse strings。
1、问题描述: 学习Python操作word文件,使用render()方法时报错ValueError: can only parse strings。 2、相关代码 ``` # _*_ encoding:utf-8 _*_ from docxtpl import DocxTemplate data_dic = { 't1':'燕子', 't2':'杨柳', 't3':'桃花', 't4':'针尖', 't5':'头涔涔', 't6':'泪潸潸', 't7':'茫茫然', 't8':'伶伶俐俐', } doc = DocxTemplate("/test/test.doc") #加载模板文件 doc.render(data_dic) #填充数据 doc.save("/test/target.doc") ``` 3、模板信息: ``` {{r t1}}去了,有再来的时候;{{r t2}}枯了,有再青的时候;{{r t3}}谢了,有再开的时候。但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?——是有人偷了他们罢:那是谁?又藏在何处呢?是他们自己逃走了罢:现在又到了哪里呢? 我不知道他们给了我多少日子;但我的手确乎是渐渐空虚了。在默默里算着,八千多日子已经从我手中溜去;像{{r t4}}上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。我不禁{{r t5}}而{{r t6}}了。 去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。太阳他有脚啊,轻轻悄悄地挪移了;我也{{r t7}}跟着旋转。于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便{{r t8}}地从我身上跨过,从我脚边飞去了。等我睁开眼和太阳再见,这算又溜走了一日。我掩着面叹息。但是新来的日子的影儿又开始在叹息里闪过了。 ``` 4、报错信息: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068250_471502.png) 5、相关依赖包版本 ``` doc 0.1.0 docx 0.2.4 docxtpl 0.6.3 lxml 3.2.1 Jinja2 2.10.3 ``` 6、我尝试更换了lxml的版本发现报错信息一样。我又尝试跟踪错误,在这个文件里: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068951_317573.png) 打印了一下text: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579068974_898727.png) 发现有一步text为None: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579069045_944104.png) 7、所以想问一下有没有大佬遇到并解决过这个问题,怎么解决这个问题。救救一下小萌新吧,还有就是val._target._blob这个变量里存的是什么数据,为什么会出现None的情况?谢谢大佬的指点! 8、追加: 问题暂时得到了解决,我在get_headers_footers_xml这个函数里添加了不为空的判断if val._target._blob != None:yield relKey, self.xml_to_string(parse_xml(val._target._blob)) 就不再报错并且成功写入到目标文件里,但是我仍然不清楚这是不是依赖包本身的BUG。如果有大佬知道的话请指点我一下。如果也有遇到这个问题的朋友,可以试一试我这个方法暂时解决一下。下面是我修改的图片: ![图片说明](https://img-ask.csdn.net/upload/202001/15/1579074850_454765.png)
ValueError: multilabel-indicator format is not supported的报错原因?
报错ValueError: multilabel-indicator format is not supported? 这个报错意思比较明确,不支持多分类,但我模型里y的label定义就是0和1,binary,为啥会有这个报错? 一个图像2分类的keras模型,总样本量=120,其中label"0"=110,label"1"=10,非平衡, 代码如下: data = np.load('D:/a.npz') image_data, label_data= data['image'], data['label'] skf = StratifiedKFold(n_splits=3, shuffle=True) for train, test in skf.split(image_data, label_data): train_x=image_data[train] test_x=image_data[test] train_y=label_data[train] test_y=label_data[test] train_x = train_x.reshape(81,50176) test_x = test_x.reshape(39,50176) train_y = keras.utils.to_categorical(train_y,2) test_y = keras.utils.to_categorical(test_y,2) model = Sequential() model.add(Dense(units=128,activation="relu",input_shape=(50176,))) model.add(Dense(units=128,activation="relu")) model.add(Dense(units=128,activation="relu")) model.add(Dense(units=2,activation="sigmoid")) model.compile(optimizer=SGD(0.001),loss="binary_crossentropy",metrics=["accuracy"]) model.fit(train_x, train_y,batch_size=32,epochs=5,verbose=1) y_pred_model = model.predict_proba(test_x)[:,1] fpr_model, tpr_model, _ = roc_curve(test_y, y_pred_model) 报错提示如下: ---> 63 fpr_model, tpr_model, _ = roc_curve(test_y, y_pred_model) ValueError: multilabel-indicator format is not supported
ValueError: None values not supported.
Traceback (most recent call last): File "document_summarizer_training_testing.py", line 296, in <module> tf.app.run() File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 48, _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "document_summarizer_training_testing.py", line 291, in main train() File "document_summarizer_training_testing.py", line 102, in train model = MY_Model(sess, len(vocab_dict)-2) File "/home/lyliu/Refresh-master-self-attention/my_model.py", line 70, in __init__ self.train_op_policynet_expreward = model_docsum.train_neg_expectedreward(self.rewardweighted_cross_entropy_loss_multi File "/home/lyliu/Refresh-master-self-attention/model_docsum.py", line 835, in train_neg_expectedreward grads_and_vars_capped_norm = [(tf.clip_by_norm(grad, 5.0), var) for grad, var in grads_and_vars] File "/home/lyliu/Refresh-master-self-attention/model_docsum.py", line 835, in <listcomp> grads_and_vars_capped_norm = [(tf.clip_by_norm(grad, 5.0), var) for grad, var in grads_and_vars] File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/ops/clip_ops.py", line 107,rm t = ops.convert_to_tensor(t, name="t") File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 676o_tensor as_ref=False) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 741convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", onstant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "/home/lyliu/anaconda3/envs/tensorflowgpu/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py", ake_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. 使用tensorflow gpu版本 tensorflow 1.2.0。希望找到解决方法或者出现这个错误的原因
Keras报错 ‘ValueError: 'pool5' is not in list’
很长的一个project,在keras下实现VGG16。 这是报错的整个代码段: ``` for roi, roi_context in zip(rois, rois_context): ins = [im_in, dmap_in, np.array([roi]), np.array([roi_context])] print("Testing ROI {c}") subtimer.tic() blobs_out = model.predict(ins) subtimer.toc() print("Storing Results") print(layer_names) post_roi_layers = set(layer_names[layer_names.index("pool5"):]) for name, val in zip(layer_names, blobs_out): if name not in outs: outs[name] = val else: if name in post_roi_layers: outs[name] = np.concatenate([outs[name], val]) c += 1 ``` 报错信息: ``` Loading Test Data data is loaded from roidb_test_19_smol.pkl Number of Images to test: 10 Testing ROI {c} Storing Results ['cls_score', 'bbox_pred_3d'] Traceback (most recent call last): File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/main.py", line 6, in <module> results = test_main.test_tf_implementation(cache_file="roidb_test_19_smol.pkl", weights_path="rgbd_det_iter_40000.h5") File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test_main.py", line 36, in test_tf_implementation results = test.test_net(tf_model, roidb) File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test.py", line 324, in test_net im_detect_3d(net, im, dmap, test['boxes'], test['boxes_3d'], test['rois_context']) File "/Users/xijiejiao/Amodal3Det_TF/tfmodel/test.py", line 200, in im_detect_3d post_roi_layers = set(layer_names[layer_names.index("pool5"):]) ValueError: 'pool5' is not in list ```
爬虫过程中遇到报错:ValueError: can only parse strings
源代码如下: import requests import json from requests.exceptions import RequestException import time from lxml import etree def get_one_page(url): try: headers = { 'User-Agent': 'Mozilla/5.0(Macintosh;Intel Mac OS X 10_13_3) AppleWebKit/537.36(KHTML,like Gecko) Chorme/65.0.3325.162 Safari/537.36' } response = requests.get(url,headers = headers) if response.status_code == 200: return response.text return None except RequestException: return None def parse_one_page(html): html_coner = etree.HTML(html) pattern = html_coner.xpath('//div[@id="container"]/div[@id="main"/div[@class = "ywnr_box"]//a/text()') return pattern def write_to_file(content): with open('results.txt','a',encoding='utf-8') as f: f.write(json.dumps(content,ensure_ascii=False)+'\n') def main(offset): url = 'http://www.cdpf.org.cn/yw/index_'+str(offset)+'.shtml' html = get_one_page(url) for item in parse_one_page(html): print(item) write_to_file(item) if __name__ == '__main__': for i in range(6): main(offset=i*10) time.sleep(1) 请问各位大佬到底是哪里出了错??
关于object detection运行视频检测代码出现报错:ValueError:assignment destination is read-only
我参考博主 withzheng的博客:https://blog.csdn.net/xiaoxiao123jun/article/details/76605928 在视频物体识别的部分中,我用的是Anaconda自带的spyder(python3.6)来运行他给的视频检测代码,出现了如下报错,![图片说明](https://img-ask.csdn.net/upload/201904/20/1555752185_448895.jpg) 具体报错: Moviepy - Building video video1_out.mp4. Moviepy - Writing video video1_out.mp4 t: 7%|▋ | 7/96 [00:40<09:17, 6.26s/it, now=None]Traceback (most recent call last): File "", line 1, in runfile('C:/models-master1/research/object_detection/object_detection_tutorial (1).py', wdir='C:/models-master1/research/object_detection') File "C:\Users\Administrator\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile execfile(filename, namespace) File "C:\Users\Administrator\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile exec(compile(f.read(),filename,'exec'), namespace) File "C:/models-master1/research/object_detection/object_detection_tutorial (1).py", line 273, in white_clip.write_videofile(white_output, audio=False) File "", line 2, in write_videofile File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 54, in requires_duration return f(clip, *a, **k) File "", line 2, in write_videofile File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 137, in use_clip_fps_by_default return f(clip, *new_a, **new_kw) File "", line 2, in write_videofile File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 22, in convert_masks_to_RGB return f(clip, *a, **k) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\video\VideoClip.py", line 326, in write_videofile logger=logger) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\video\io\ffmpeg_writer.py", line 216, in ffmpeg_write_video fps=fps, dtype="uint8"): File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\Clip.py", line 475, in iter_frames frame = self.get_frame(t) File "", line 2, in get_frame File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\decorators.py", line 89, in wrapper return f(*new_a, **new_kw) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\Clip.py", line 95, in get_frame return self.make_frame(t) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\Clip.py", line 138, in newclip = self.set_make_frame(lambda t: fun(self.get_frame, t)) File "C:\Users\Administrator\Anaconda3\lib\site-packages\moviepy\video\VideoClip.py", line 511, in return self.fl(lambda gf, t: image_func(gf(t)), apply_to) File "C:/models-master1/research/object_detection/object_detection_tutorial (1).py", line 267, in process_image image_process=detect_objects(image,sess,detection_graph) File "C:/models-master1/research/object_detection/object_detection_tutorial (1).py", line 258, in detect_objects line_thickness=8) File "C:\models-master1\research\object_detection\utils\visualization_utils.py", line 743, in visualize_boxes_and_labels_on_image_array use_normalized_coordinates=use_normalized_coordinates) File "C:\models-master1\research\object_detection\utils\visualization_utils.py", line 129, in draw_bounding_box_on_image_array np.copyto(image, np.array(image_pil)) ValueError: assignment destination is read-only 想问问各位大神有遇到过类似的问题吗。。如何解决?
RK3288 make otapackage 报错ValueError: need more than 1 value to unpack
mkbootimg_args = (str) multistage_support = (str) 1 recovery_api_version = (int) 2 selinux_fc = (str) /tmp/targetfiles-WQjmn2/BOOT/RAMDISK/file_contexts system_size = (int) 1610612736 tool_extensions = (str) device/rockchip/rksdk update_rename_support = (str) 1 use_set_metadata = (str) 1 using device-specific extensions in device/rockchip/rksdk building image from target_files RECOVERY... running: mkbootfs -f /tmp/targetfiles-WQjmn2/META/recovery_filesystem_config.txt /tmp/targetfiles-WQjmn2/RECOVERY/RAMDISK running: minigzip running: mkbootimg --kernel /tmp/targetfiles-WQjmn2/RECOVERY/kernel --second /tmp/targetfiles-WQjmn2/RECOVERY/resource.img --ramdisk /tmp/tmpBdTCrB --output /tmp/tmpNnUZoC running: drmsigntool /tmp/tmpNnUZoC build/target/product/security/privateKey.bin src_path: /tmp/tmpNnUZoC, private_key_path: build/target/product/security/privateKey.bin can't open file build/target/product/security/privateKey.bin! no find private key, so not sign boot.img! building image from target_files BOOT... running: mkbootfs -f /tmp/targetfiles-WQjmn2/META/boot_filesystem_config.txt /tmp/targetfiles-WQjmn2/BOOT/RAMDISK running: minigzip running: mkbootimg --kernel /tmp/targetfiles-WQjmn2/BOOT/kernel --second /tmp/targetfiles-WQjmn2/BOOT/resource.img --ramdisk /tmp/tmp6LpDeb --output /tmp/tmppqQcvT running: drmsigntool /tmp/tmppqQcvT build/target/product/security/privateKey.bin src_path: /tmp/tmppqQcvT, private_key_path: build/target/product/security/privateKey.bin can't open file build/target/product/security/privateKey.bin! no find private key, so not sign boot.img! running: imgdiff -b /tmp/targetfiles-WQjmn2/SYSTEM/etc/recovery-resource.dat /tmp/tmpD07dY4 /tmp/tmpXulEpX /tmp/tmp1qudyL Traceback (most recent call last): File "./build/tools/releasetools/ota_from_target_files", line 1059, in <module> main(sys.argv[1:]) File "./build/tools/releasetools/ota_from_target_files", line 1027, in main WriteFullOTAPackage(input_zip, output_zip) File "./build/tools/releasetools/ota_from_target_files", line 502, in WriteFullOTAPackage Item.GetMetadata(input_zip) File "./build/tools/releasetools/ota_from_target_files", line 197, in GetMetadata key, value = element.split("=") ValueError: need more than 1 value to unpack make: *** [out/target/product/rk3288/rk3288-ota-eng.wake.zip] 错误 1
ValueError: could not broadcast input array from shape (100,100,3) into shape (100,100)
path是图片的路径 w,h是图片的设定长宽 ```def read_img(path): cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)] imgs=[] labels=[] for idx,folder in enumerate(cate): for im in glob.glob(folder+'/*.jpg'): print('reading the images:%s'%(im)) img=io.imread(im) img=transform.resize(img,(w,h)) imgs.append(img) labels.append(idx) return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) data,label=read_img(path) ``` 我运行花卉图片加载的时候无错误,但换个路径运行猫狗识别的时候就报错 File "C:/Users/spirit/Desktop/实验练习/tensorflow/猫狗识别/训练模型/猫狗识别.py", line 34, in <module>data,label=read_img(path) File "C:/Users/spirit/Desktop/实验练习/tensorflow/猫狗识别/训练模型/猫狗识别.py", line 31, in read_img return np.asarray(imgs,np.float32),np.asarray(labels,np.int32) File "D:\Anaconda\envs\tensorflow\lib\site-packages\numpy\core\numeric.py", line 501, in asarray return array(a, dtype, copy=False, order=order) ValueError: could not broadcast input array from shape (100,100,3) into shape (100,100) 我真心不懂,只是换了其他图片加载,为什么就报错,真心求教! 我在想是不是我的猫狗图片出了问题,但看了也感觉没什么问题啊,头痛
ValueError: No data files found in satellite/data\satellite_train_*.tfrecord
跟着书做"打造自己的图片识别模型"项目时候遇到报错,报错早不到数据文件,但是文件路径和数据都没问题 D:\Anaconda\anaconda\envs\tensorflow\python.exe D:/PyCharm/PycharmProjects/chapter_3/slim/train_image_classifier.py --train_dir=satellite/train_dir --dataset_name=satellite --dataset_split_name=train --dataset_dir=satellite/data --model_name=inception_v3 --checkpoint_path=satellite/pretrained/inception_v3.ckpt --checkpoint_exclude_scopes=InceptionV3/Logits,InceptionV3/AuxLogits --trainable_scopes=InceptionV3/Logits,InceptionV3/AuxLogits --max_number_of_steps=100000 --batch_size=32 --learning_rate=0.001 --learning_rate_decay_type=fixed --save_interval_secs=300 --save_summaries_secs=2 --log_every_n_steps=10 --optimizer=rmsprop --weight_decay=0.00004 WARNING:tensorflow:From D:/PyCharm/PycharmProjects/chapter_3/slim/train_image_classifier.py:397: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Please switch to tf.train.create_global_step Traceback (most recent call last): File "D:/PyCharm/PycharmProjects/chapter_3/slim/train_image_classifier.py", line 572, in <module> tf.app.run() File "D:\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\python\platform\app.py", line 48, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "D:/PyCharm/PycharmProjects/chapter_3/slim/train_image_classifier.py", line 430, in main common_queue_min=10 * FLAGS.batch_size) File "D:\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\contrib\slim\python\slim\data\dataset_data_provider.py", line 94, in __init__ scope=scope) File "D:\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\contrib\slim\python\slim\data\parallel_reader.py", line 238, in parallel_read data_files = get_data_files(data_sources) File "D:\Anaconda\anaconda\envs\tensorflow\lib\site-packages\tensorflow\contrib\slim\python\slim\data\parallel_reader.py", line 311, in get_data_files raise ValueError('No data files found in %s' % (data_sources,)) ValueError: No data files found in satellite/data\satellite_train_*.tfrecord
Django创建超级用户时,出现错误 ValueError: invalid literal for int() with base 10: ''
ERROR exception 135 Internal Server Error: /users/ Traceback (most recent call last): File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/core/handlers/exception.py", line 41, in inner response = get_response(request) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/core/handlers/base.py", line 187, in _get_response response = self.process_exception_by_middleware(e, request) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/core/handlers/base.py", line 185, in _get_response response = wrapped_callback(request, *callback_args, **callback_kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/views/decorators/csrf.py", line 58, in wrapped_view return view_func(*args, **kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/views/generic/base.py", line 68, in view return self.dispatch(request, *args, **kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/views.py", line 505, in dispatch response = self.handle_exception(exc) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/views.py", line 465, in handle_exception self.raise_uncaught_exception(exc) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/views.py", line 476, in raise_uncaught_exception raise exc File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/views.py", line 502, in dispatch response = handler(request, *args, **kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/generics.py", line 242, in post return self.create(request, *args, **kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/mixins.py", line 19, in create self.perform_create(serializer) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/mixins.py", line 24, in perform_create serializer.save() File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/rest_framework/serializers.py", line 213, in save self.instance = self.create(validated_data) File "/home/python/dihai02/per02/apps/users/serializers/user.py", line 25, in create user = User.objects.create_user(**validated_data) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/contrib/auth/models.py", line 159, in create_user return self._create_user(username, email, password, **extra_fields) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/contrib/auth/models.py", line 153, in _create_user user.save(using=self._db) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/contrib/auth/base_user.py", line 80, in save super(AbstractBaseUser, self).save(*args, **kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/base.py", line 808, in save force_update=force_update, update_fields=update_fields) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/base.py", line 838, in save_base updated = self._save_table(raw, cls, force_insert, force_update, using, update_fields) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/base.py", line 924, in _save_table result = self._do_insert(cls._base_manager, using, fields, update_pk, raw) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/base.py", line 963, in _do_insert using=using, raw=raw) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/manager.py", line 85, in manager_method return getattr(self.get_queryset(), name)(*args, **kwargs) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/query.py", line 1076, in _insert return query.get_compiler(using=using).execute_sql(return_id) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/sql/compiler.py", line 1111, in execute_sql for sql, params in self.as_sql(): File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/sql/compiler.py", line 1064, in as_sql for obj in self.query.objs File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/sql/compiler.py", line 1064, in <listcomp> for obj in self.query.objs File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/sql/compiler.py", line 1063, in <listcomp> [self.prepare_value(field, self.pre_save_val(field, obj)) for field in fields] File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/sql/compiler.py", line 1003, in prepare_value value = field.get_db_prep_save(value, connection=self.connection) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/fields/__init__.py", line 770, in get_db_prep_save prepared=False) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/fields/__init__.py", line 762, in get_db_prep_value value = self.get_prep_value(value) File "/home/python/.virtualenvs/yuan/lib/python3.7/site-packages/django/db/models/fields/__init__.py", line 1853, in get_prep_value return int(value) ValueError: invalid literal for int() with base 10: ''
python错误:ValueError: No JSON object could be decoded
#-*- coding:utf-8 -*- import requests from operator import itemgetter # 执行API调用并存储响应 url = 'http://hacker-news.firebaseio.com/v0/topstories.json' r = requests.get(url) print("Status code:", r.status_code) # 处理有关每篇文章的信息 submission_ids = r.json() submission_dicts = [] for submission_id in submission_ids[:30]: # 对于每篇文章,都执行一个API调用 url = ('http://hacker-news.firebaseio.com/v0/item/' + str(submission_id) + '.json') submission_r = requesets.get(url) print(submisssion_r.status_code) reponse_dict = submission_r.json() submission_dict = { 'title': resopnse_dict['title'], 'link': 'http://news.ycombinator.com/item?id=' + str(submission_id), 'comments': response_dict.get('descendants', 0) } submission_dicts.append(submission_dict) submission_dicts = sorted(submission_dicts, key=itemgetter('comments'), recerse=Ture) for submission_dict in submission_dicts: print("/nTitle:", submission_dict['title']) print("Discussion link:", submission_dict['link']) print("Comeents", submission_dict['comments'])
终于明白阿里百度这样的大公司,为什么面试经常拿ThreadLocal考验求职者了
点击上面↑「爱开发」关注我们每晚10点,捕获技术思考和创业资源洞察什么是ThreadLocalThreadLocal是一个本地线程副本变量工具类,各个线程都拥有一份线程私...
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小人工智障。 思路可以运用在不同地方,主要介绍的是思路。
面试官问我:什么是消息队列?什么场景需要他?用了会出现什么问题?
你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图、个人联系方式和人才交流群,欢迎Star和完善 前言 消息队列在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在消息队列的使用和原理方面对小伙伴们进行360°的刁难。 作为一个在互联网公司面一次拿一次Offer的面霸...
8年经验面试官详解 Java 面试秘诀
作者 |胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。 Java程序员准备和投递简历的实...
究竟你适不适合买Mac?
我清晰的记得,刚买的macbook pro回到家,开机后第一件事情,就是上了淘宝网,花了500元钱,找了一个上门维修电脑的师傅,上门给我装了一个windows系统。。。。。。 表砍我。。。 当时买mac的初衷,只是想要个固态硬盘的笔记本,用来运行一些复杂的扑克软件。而看了当时所有的SSD笔记本后,最终决定,还是买个好(xiong)看(da)的。 已经有好几个朋友问我mba怎么样了,所以今天尽量客观...
MyBatis研习录(01)——MyBatis概述与入门
MyBatis 是一款优秀的持久层框架,它支持定制化 SQL、存储过程以及高级映射。MyBatis原本是apache的一个开源项目iBatis, 2010年该项目由apache software foundation 迁移到了google code并改名为MyBatis 。2013年11月MyBatis又迁移到Github。
程序员一般通过什么途径接私活?
二哥,你好,我想知道一般程序猿都如何接私活,我也想接,能告诉我一些方法吗? 上面是一个读者“烦不烦”问我的一个问题。其实不止是“烦不烦”,还有很多读者问过我类似这样的问题。 我接的私活不算多,挣到的钱也没有多少,加起来不到 20W。说实话,这个数目说出来我是有点心虚的,毕竟太少了,大家轻喷。但我想,恰好配得上“一般程序员”这个称号啊。毕竟苍蝇再小也是肉,我也算是有经验的人了。 唾弃接私活、做外...
Python爬虫爬取淘宝,京东商品信息
小编是一个理科生,不善长说一些废话。简单介绍下原理然后直接上代码。 使用的工具(Python+pycharm2019.3+selenium+xpath+chromedriver)其中要使用pycharm也可以私聊我selenium是一个框架可以通过pip下载 pip installselenium -ihttps://pypi.tuna.tsinghua.edu.cn/simple/ ...
阿里程序员写了一个新手都写不出的低级bug,被骂惨了。
这种新手都不会范的错,居然被一个工作好几年的小伙子写出来,差点被当场开除了。
Java工作4年来应聘要16K最后没要,细节如下。。。
前奏: 今天2B哥和大家分享一位前几天面试的一位应聘者,工作4年26岁,统招本科。 以下就是他的简历和面试情况。 基本情况: 专业技能: 1、&nbsp;熟悉Sping了解SpringMVC、SpringBoot、Mybatis等框架、了解SpringCloud微服务 2、&nbsp;熟悉常用项目管理工具:SVN、GIT、MAVEN、Jenkins 3、&nbsp;熟悉Nginx、tomca...
Python爬虫精简步骤1 获取数据
爬虫,从本质上来说,就是利用程序在网上拿到对我们有价值的数据。 爬虫能做很多事,能做商业分析,也能做生活助手,比如:分析北京近两年二手房成交均价是多少?广州的Python工程师平均薪资是多少?北京哪家餐厅粤菜最好吃?等等。 这是个人利用爬虫所做到的事情,而公司,同样可以利用爬虫来实现巨大的商业价值。比如你所熟悉的搜索引擎——百度和谷歌,它们的核心技术之一也是爬虫,而且是超级爬虫。 从搜索巨头到人工...
Python绘图,圣诞树,花,爱心 | Turtle篇
每周每日,分享Python实战代码,入门资料,进阶资料,基础语法,爬虫,数据分析,web网站,机器学习,深度学习等等。 公众号回复【进群】沟通交流吧,QQ扫码进群学习吧 微信群 QQ群 1.画圣诞树 import turtle screen = turtle.Screen() screen.setup(800,600) circle = turtle.Turtle()...
作为一个程序员,CPU的这些硬核知识你必须会!
CPU对每个程序员来说,是个既熟悉又陌生的东西? 如果你只知道CPU是中央处理器的话,那可能对你并没有什么用,那么作为程序员的我们,必须要搞懂的就是CPU这家伙是如何运行的,尤其要搞懂它里面的寄存器是怎么一回事,因为这将让你从底层明白程序的运行机制。 随我一起,来好好认识下CPU这货吧 把CPU掰开来看 对于CPU来说,我们首先就要搞明白它是怎么回事,也就是它的内部构造,当然,CPU那么牛的一个东...
破14亿,Python分析我国存在哪些人口危机!
一、背景 二、爬取数据 三、数据分析 1、总人口 2、男女人口比例 3、人口城镇化 4、人口增长率 5、人口老化(抚养比) 6、各省人口 7、世界人口 四、遇到的问题 遇到的问题 1、数据分页,需要获取从1949-2018年数据,观察到有近20年参数:LAST20,由此推测获取近70年的参数可设置为:LAST70 2、2019年数据没有放上去,可以手动添加上去 3、将数据进行 行列转换 4、列名...
web前端javascript+jquery知识点总结
1.Javascript 语法.用途 javascript 在前端网页中占有非常重要的地位,可以用于验证表单,制作特效等功能,它是一种描述语言,也是一种基于对象(Object)和事件驱动并具有安全性的脚本语言 ...
Python实战:抓肺炎疫情实时数据,画2019-nCoV疫情地图
今天,群里白垩老师问如何用python画武汉肺炎疫情地图。白垩老师是研究海洋生态与地球生物的学者,国家重点实验室成员,于不惑之年学习python,实为我等学习楷模。先前我并没有关注武汉肺炎的具体数据,也没有画过类似的数据分布图。于是就拿了两个小时,专门研究了一下,遂成此文。
听说想当黑客的都玩过这个Monyer游戏(1~14攻略)
第零关 进入传送门开始第0关(游戏链接) 请点击链接进入第1关: 连接在左边→ ←连接在右边 看不到啊。。。。(只能看到一堆大佬做完的留名,也能看到菜鸡的我,在后面~~) 直接fn+f12吧 &lt;span&gt;连接在左边→&lt;/span&gt; &lt;a href="first.php"&gt;&lt;/a&gt; &lt;span&gt;←连接在右边&lt;/span&gt; o...
在家远程办公效率低?那你一定要收好这个「在家办公」神器!
相信大家都已经收到国务院延长春节假期的消息,接下来,在家远程办公可能将会持续一段时间。 但是问题来了。远程办公不是人在电脑前就当坐班了,相反,对于沟通效率,文件协作,以及信息安全都有着极高的要求。有着非常多的挑战,比如: 1在异地互相不见面的会议上,如何提高沟通效率? 2文件之间的来往反馈如何做到及时性?如何保证信息安全? 3如何规划安排每天工作,以及如何进行成果验收? ...... ...
作为一个程序员,内存和磁盘的这些事情,你不得不知道啊!!!
截止目前,我已经分享了如下几篇文章: 一个程序在计算机中是如何运行的?超级干货!!! 作为一个程序员,CPU的这些硬核知识你必须会! 作为一个程序员,内存的这些硬核知识你必须懂! 这些知识可以说是我们之前都不太重视的基础知识,可能大家在上大学的时候都学习过了,但是嘞,当时由于老师讲解的没那么有趣,又加上这些知识本身就比较枯燥,所以嘞,大家当初几乎等于没学。 再说啦,学习这些,也看不出来有什么用啊!...
渗透测试-灰鸽子远控木马
木马概述 灰鸽子( Huigezi),原本该软件适用于公司和家庭管理,其功能十分强大,不但能监视摄像头、键盘记录、监控桌面、文件操作等。还提供了黑客专用功能,如:伪装系统图标、随意更换启动项名称和表述、随意更换端口、运行后自删除、毫无提示安装等,并采用反弹链接这种缺陷设计,使得使用者拥有最高权限,一经破解即无法控制。最终导致被黑客恶意使用。原作者的灰鸽子被定义为是一款集多种控制方式于一体的木马程序...
Python:爬取疫情每日数据
前言 目前每天各大平台,如腾讯、今日头条都会更新疫情每日数据,他们的数据源都是一样的,主要都是通过各地的卫健委官网通报。 以全国、湖北和上海为例,分别为以下三个网站: 国家卫健委官网:http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml 湖北卫健委官网:http://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgrfyyq/xxfb...
这个世界上人真的分三六九等,你信吗?
偶然间,在知乎上看到一个问题 一时间,勾起了我深深的回忆。 以前在厂里打过两次工,做过家教,干过辅导班,做过中介。零下几度的晚上,贴过广告,满脸、满手地长冻疮。 再回首那段岁月,虽然苦,但让我学会了坚持和忍耐。让我明白了,在这个世界上,无论环境多么的恶劣,只要心存希望,星星之火,亦可燎原。 下文是原回答,希望能对你能有所启发。 如果我说,这个世界上人真的分三六九等,...
B 站上有哪些很好的学习资源?
哇说起B站,在小九眼里就是宝藏般的存在,放年假宅在家时一天刷6、7个小时不在话下,更别提今年的跨年晚会,我简直是跪着看完的!! 最早大家聚在在B站是为了追番,再后来我在上面刷欧美新歌和漂亮小姐姐的舞蹈视频,最近两年我和周围的朋友们已经把B站当作学习教室了,而且学习成本还免费,真是个励志的好平台ヽ(.◕ฺˇд ˇ◕ฺ;)ノ 下面我们就来盘点一下B站上优质的学习资源: 综合类 Oeasy: 综合...
雷火神山直播超两亿,Web播放器事件监听是怎么实现的?
Web播放器解决了在手机浏览器和PC浏览器上播放音视频数据的问题,让视音频内容可以不依赖用户安装App,就能进行播放以及在社交平台进行传播。在视频业务大数据平台中,播放数据的统计分析非常重要,所以Web播放器在使用过程中,需要对其内部的数据进行收集并上报至服务端,此时,就需要对发生在其内部的一些播放行为进行事件监听。 那么Web播放器事件监听是怎么实现的呢? 01 监听事件明细表 名...
3万字总结,Mysql优化之精髓
本文知识点较多,篇幅较长,请耐心学习 MySQL已经成为时下关系型数据库产品的中坚力量,备受互联网大厂的青睐,出门面试想进BAT,想拿高工资,不会点MySQL优化知识,拿offer的成功率会大大下降。 为什么要优化 系统的吞吐量瓶颈往往出现在数据库的访问速度上 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢 数据是存放在磁盘上的,读写速度无法和内存相比 如何优化 设计...
Python新型冠状病毒疫情数据自动爬取+统计+发送报告+数据屏幕(三)发送篇
今天介绍的项目是使用 Itchat 发送统计报告 项目功能设计: 定时爬取疫情数据存入Mysql 进行数据分析制作疫情报告 使用itchat给亲人朋友发送分析报告 基于Django做数据屏幕 使用Tableau做数据分析 来看看最终效果 目前已经完成,预计2月12日前更新 使用 itchat 发送数据统计报告 itchat 是一个基于 web微信的一个框架,但微信官方并不允许使用这...
作为程序员的我,大学四年一直自学,全靠这些实用工具和学习网站!
我本人因为高中沉迷于爱情,导致学业荒废,后来高考,毫无疑问进入了一所普普通通的大学,实在惭愧???? 我又是那么好强,现在学历不行,没办法改变的事情了,所以,进入大学开始,我就下定决心,一定要让自己掌握更多的技能,尤其选择了计算机这个行业,一定要多学习技术。 在进入大学学习不久后,我就认清了一个现实:我这个大学的整体教学质量和学习风气,真的一言难尽,懂的人自然知道怎么回事? 怎么办?我该如何更好的提升自...
粒子群算法求解物流配送路线问题(python)
1.Matlab实现粒子群算法的程序代码:https://www.cnblogs.com/kexinxin/p/9858664.html matlab代码求解函数最优值:https://blog.csdn.net/zyqblog/article/details/80829043 讲解通俗易懂,有数学实例的博文:https://blog.csdn.net/daaikuaichuan/article/...
教你如何编写第一个简单的爬虫
很多人知道爬虫,也很想利用爬虫去爬取自己想要的数据,那么爬虫到底怎么用呢?今天就教大家编写一个简单的爬虫。 下面以爬取笔者的个人博客网站为例获取第一篇文章的标题名称,教大家学会一个简单的爬虫。 第一步:获取页面 #!/usr/bin/python # coding: utf-8 import requests #引入包requests link = "http://www.santostang....
前端JS初级面试题二 (。•ˇ‸ˇ•。)老铁们!快来瞧瞧自己都会了么
1. 传统事件绑定和符合W3C标准的事件绑定有什么区别? 传统事件绑定 &lt;div onclick=""&gt;123&lt;/div&gt; div1.onclick = function(){}; &lt;button onmouseover=""&gt;&lt;/button&gt; 注意: 如果给同一个元素绑定了两次或多次相同类型的事件,那么后面的绑定会覆盖前面的绑定 (不支持DOM事...
相关热词 c#导入fbx c#中屏蔽键盘某个键 c#正态概率密度 c#和数据库登陆界面设计 c# 高斯消去法 c# codedom c#读取cad文件文本 c# 控制全局鼠标移动 c# temp 目录 bytes初始化 c#
立即提问

相似问题

1
ValueError: None values not supported.
4
python调用cv2.findContours时报错:ValueError: not enough values to unpack (expected 3, got 2)
0
import nltk时出现错误ValueError: source code string cannot contain null bytes
0
windows上tensorboard无法启动 显示ValueError: Invalid format string
1
python错误:ValueError: No JSON object could be decoded
2
ValueError: No data files found in satellite/data\satellite_train_*.tfrecord
0
ValueError: multilabel-indicator format is not supported的报错原因?
1
关于object detection运行视频检测代码出现报错:ValueError:assignment destination is read-only
0
ValueError: invalid literal for int() with base 10: 'aer'
1
Keras报错 ‘ValueError: 'pool5' is not in list’
1
吐血!ValueError: shapes (278,6751) and (0,) not aligned: 6751 (dim 1) != 0 (dim 0)
1
使用TensorFlow搭建CNN卷积层和池化层出现ValueError错误
1
TensorFlow初始化一个权重矩阵时报了这个错误,想请教一下大家是怎么回事
1
ValueError: Variable embedding_attention_seq2seq/rnn/embedding_wrapper/embedding already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at
0
在Cent OS中复现已发表文章的 神经网络训练过程,报错ValueError: low >= high
1
爬虫过程中遇到报错:ValueError: can only parse strings
1
keras 训练网络时出现ValueError
0
关于celery启动任务时报错Thread 'ResultHandler' crashed: ValueError('invalid file descriptor 13',)
1
Django创建超级用户时,出现错误 ValueError: invalid literal for int() with base 10: ''