emgucv PCA分析 总是报错

求大神指点

private void btn_hg_Click(object sender, EventArgs e)
{
int m = Wavelenth[0].Count;

double[,] data=new double[num,m];
for(int i=0;i {
for(int j=0;j {
data[i,j]=Reflectance[j];
}
}
Matrix matrix1 = new Matrix(data);

  •    已引发: "不支持 URI 格式。" (System.ArgumentException)    异常消息 = "不支持 URI 格式。", 异常类型 = "System.ArgumentException", 异常 WinRT 数据 = null   
    
        Matrix<Double> pMean = new Matrix<double>(1, m);//平均值
        Matrix<Double> pEigVals = new Matrix<double>(num,1);//特征值
        Matrix<Double> pEigVecs = new Matrix<double>(num,num);//特征向量
        Matrix<Double> pResult = new Matrix<double>(num, 5);//结果            
        Emgu.CV.CvInvoke.cvCalcPCA(matrix1, pMean, pEigVals, pEigVecs, Emgu.CV.CvEnum.PCA_TYPE.CV_PCA_DATA_AS_ROW);
    
  •    已引发: "OpenCV: (evals0.cols == 1 || evals0.rows == 1) && ecount0 <= ecount && evects0.cols == evects.cols && evects0.rows == ecount0" (Emgu.CV.Util.CvException)    异常消息 = "OpenCV: (evals0.cols == 1 || evals0.rows == 1) && ecount0 <= ecount && evects0.cols == evects.cols && evects0.rows == ecount0", 异常类型 = "Emgu.CV.Util.CvException", 异常 WinRT 数据 = null   
    
        //选出前P个特征向量(主成份),然后投影,结果保存在pResult中,pResult中包含了P个系数
        CvInvoke.cvProjectPCA(matrix1, pMean, pEigVecs, pResult);            
        MessageBox.Show("OK");
    
    }
    

1个回答

已解决,特征值,特征向量的维数错误;
换成这个:
Matrix matrix1 = new Matrix(data);

Matrix pMean = new Matrix(1, m);//平均值
Matrix pEigVals = new Matrix(Math.Min(m,num) ,1);//特征值
Matrix pEigVecs = new Matrix(Math.Min(m, num),m);//特征向量
Matrix pResult = new Matrix(num, 5);//结果

        Emgu.CV.CvInvoke.cvCalcPCA(matrix1, pMean, pEigVals, pEigVecs,Emgu.CV.CvEnum.PCA_TYPE.CV_PCA_DATA_AS_ROW);
        //选出前P个特征向量(主成份),然后投影,结果保存在pResult中,pResult中包含了P个系数
        CvInvoke.cvProjectPCA(matrix1, pMean, pEigVecs, pResult);     
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
求C#实现PCA算法的例子
求C#实现PCA算法的例子,PCA为主成分分析, 看了一天的百度,然而线性代数的知识完全不记得了。 求各位大神指点迷津,万分感谢!
做ufldl的教程练习时display_network运行报错。
RT,我用OCtave做了ufldl教程中的Exercise:Sparse Autoencoder和Exercise:PCA and Whitening练习,一旦运行了display_network就会显示出错。这个函数是习题提供,我没有改过。报错提示如下: >> pca_gen error: set: invalid number of arguments error: called from image>__img__ at line 198 column 5 image at line 117 column 10 imagesc at line 98 column 12 display_network at line 93 column 6 pca_gen at line 13 column 1 请问这是为何啊?求大神解答。谢谢!
交叉验证获取最佳决策树深度报错
代码如下: ``` def best_depth_decision(d): lr2 = DecisionTreeRegressor(max_depth=d) kfold_depth = KFold(n_splits=10,random_state=1).split(x_train_pca,y_train) mse_kfold_test = [] mse_kfold_train = [] for k, (train, test) in enumerate(kfold_depth): lr2.fit(x_train_pca[train],y_train[train]) y_test_pred2 = lr2.predict(x_train_pca[test]) y_train_pred2 = lr2.predict(x_train_pca[train]) s_train = mean_squared_error(y_train[train],y_train_pred2) s_test = mean_squared_error(y_train[test],y_test_pred2) mse_kfold_test = np.mean(mse_kfold_test.append(s_test)) mse_kfold_train = np.mean(mse_kfold_train.append(s_train)) return (mse_kfold_train,mse_kfold_test) depths = np.arange(1,31) scores2 = [best_depth_decision(d) for d in depths] train_mse = [s[0] for s in scores2] test_mse = [s[1] for s in scores2] train_best_index2 = np.argmin(train_mse) test_best_index2 = np.argmin(test_mse) plt.plot(depths,test_mse) plt.show() ``` 报错如下: ![图片说明](https://img-ask.csdn.net/upload/201906/19/1560949296_73209.jpg)
刚买的pca9685写的代码一直驱动不了舵机,小白求解
新手小白求问 刚买了pca9685模块,看数据手册没有中文的只好找了些别人stm32的代码改过来用在51上面,但是一直都驱动不了舵机,不是知道代码出了什么问题,求解 以下就是我用的所有源码。 ``` #ifndef __IIC_H #define __IIC_H sbit IIC_SDA = P3^6; sbit IIC_SCL = P3^7; #define u8 unsigned char #define u16 char //IIC所有操作函数 void delay_us(u8 i); void IIC_Start(void); //发送IIC开始信号 void IIC_Stop(void); //发送IIC停止信号 void IIC_Send_Byte(u8 txd); //IIC发送一个字节 u8 IIC_Read_Byte(unsigned char ack);//IIC读取一个字节 u8 IIC_Wait_Ack(void); //IIC等待ACK信号 void IIC_Ack(void); //IIC发送ACK信号 void IIC_NAck(void); //IIC不发送ACK信号 //void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 dat); //u8 IIC_Read_One_Byte(u8 daddr,u8 addr); #endif ``` ``` #include <stc12c5a60s2.h> #include <IIC.h> #include <intrins.h> void delay_us(u8 i) { u8 j; for(j=i;j>0;j--) {_nop_();} } //产生IIC起始信号 void IIC_Start(void) { // SDA_OUT(); //sda线输出 IIC_SDA=1; IIC_SCL=1; delay_us(4); IIC_SDA=0;//START:when CLK is high,DATA change form high to low delay_us(4); IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 } //产生IIC停止信号 void IIC_Stop(void) { // SDA_OUT();//sda线输出 IIC_SCL=0; IIC_SDA=0;//STOP:when CLK is high DATA change form low to high delay_us(4); IIC_SCL=1; IIC_SDA=1;//发送I2C总线结束信号 delay_us(4); } //等待应答信号到来 //返回值:1,接收应答失败 // 0,接收应答成功 u8 IIC_Wait_Ack(void) { u8 ucErrTime=0; // SDA_IN(); //SDA设置为输入 IIC_SDA=1;delay_us(1); IIC_SCL=1;delay_us(1); while(IIC_SDA) { ucErrTime++; if(ucErrTime>250) { IIC_Stop(); return 1; } } IIC_SCL=0;//时钟输出0 return 0; } //产生ACK应答 void IIC_Ack(void) { IIC_SCL=0; // SDA_OUT(); IIC_SDA=0; delay_us(2); IIC_SCL=1; delay_us(2); IIC_SCL=0; } //不产生ACK应答 void IIC_NAck(void) { IIC_SCL=0; // SDA_OUT(); IIC_SDA=1; delay_us(2); IIC_SCL=1; delay_us(2); IIC_SCL=0; } //IIC发送一个字节 //返回从机有无应答 //1,有应答 //0,无应答 void IIC_Send_Byte(u8 txd) { u8 t; // SDA_OUT(); IIC_SCL=0;//拉低时钟开始数据传输 for(t=0;t<8;t++) { IIC_SDA=(txd&0x80)>>7; txd<<=1; delay_us(2); //对TEA5767这三个延时都是必须的 IIC_SCL=1; delay_us(2); IIC_SCL=0; delay_us(2); } } //读1个字节,ack=1时,发送ACK,ack=0,发送nACK u8 IIC_Read_Byte(unsigned char ack) { unsigned char i,receive=0; // SDA_IN();//SDA设置为输入 for(i=0;i<8;i++ ) { IIC_SCL=0; delay_us(2); IIC_SCL=1; receive<<=1; if(IIC_SDA)receive++; delay_us(1); } if (!ack) IIC_NAck();//发送nACK else IIC_Ack(); //发送ACK return receive; } ``` ``` #include <stc12c5a60s2.h> #include <IIC.h> #include <intrins.h> #include <pca8574.h> #define uchar unsigned char #define uint unsigned int sbit scl=P3^6; //时钟输入线 sbit sda=P3^7; //数据输入/输出端 void PCA9685_write(unsigned char reg,unsigned char dat); u8 PCA9685_read(unsigned char reg); void setPWMFreq(u8 freq); void setPWM(u8 num, u16 on, u16 off); void down(); void up(); void delay_ms(u8 xms) { u8 i,j; for(i=xms;i>0;i--) for (j=200;j>0;j--); } void PCA9685_write(unsigned char reg,unsigned char dat) { IIC_Start(); IIC_Send_Byte(PCA9685_adrr); IIC_Wait_Ack(); IIC_Send_Byte(reg); IIC_Wait_Ack(); IIC_Send_Byte(dat); IIC_Wait_Ack(); IIC_Stop(); } u8 PCA9685_read(unsigned char reg) { u8 res; IIC_Start(); IIC_Send_Byte(PCA9685_adrr); IIC_Wait_Ack(); IIC_Send_Byte(reg); IIC_Wait_Ack(); IIC_Start(); IIC_Send_Byte(PCA9685_adrr|0X01); IIC_Wait_Ack(); res=IIC_Read_Byte(0); IIC_Stop(); return res; } void setPWMFreq(u8 freq) { u8 prescale,oldmode,newmode; double prescaleval; prescaleval = 25000000.0/(4096*freq*0.915); prescale = (u8)(prescaleval+0.5)-1; oldmode = PCA9685_read(PCA9685_MODE1); newmode = (oldmode&0x7F) | 0x10; // sleep PCA9685_write(PCA9685_MODE1, newmode); // go to sleep PCA9685_write(PCA9685_PRESCALE, prescale); // set the prescaler PCA9685_write(PCA9685_MODE1, oldmode); delay_ms(5); PCA9685_write(PCA9685_MODE1, oldmode | 0xa1); } void setPWM(u8 num, u16 on, u16 off) { PCA9685_write(LED0_ON_L+4*num,on); PCA9685_write(LED0_ON_H+4*num,on>>8); PCA9685_write(LED0_OFF_L+4*num,off); PCA9685_write(LED0_OFF_H+4*num,off>>8); } u16 calculate_PWM(u8 angle) { return (int)(204.8*(0.5+angle*1.0/90)); } void down() { u16 pwm = calculate_PWM(0); setPWM(0x0,0,pwm); delay_ms(1); setPWM(0x1,0,pwm); delay_ms(1); setPWM(0x2,0,pwm); delay_ms(1); setPWM(0x3,0,pwm); delay_ms(1); setPWM(0x4,0,pwm); delay_ms(1); setPWM(0x5,0,pwm); delay_ms(1); setPWM(0x6,0,pwm); delay_ms(1); setPWM(0x7,0,pwm); } void up() { u16 pwm = calculate_PWM(90); setPWM(0x0,0,pwm); delay_ms(1); setPWM(0x1,0,pwm); delay_ms(1); setPWM(0x2,0,pwm); delay_ms(1); setPWM(0x3,0,pwm); delay_ms(1); setPWM(0x4,0,pwm); delay_ms(1); setPWM(0x5,0,pwm); delay_ms(1); setPWM(0x6,0,pwm); delay_ms(1); setPWM(0x7,0,pwm); } void main() { PCA9685_write(PCA9685_MODE1,0x0);//PCA9685复位 setPWMFreq(50); while(1) { down(); up(); } } ``` ``` #ifndef __PCF8574_H #define __PCF8574_H #include <stc12c5a60s2.h> #define PCA9685_adrr 0x40 #define PCA9685_SUBADR1 0x2 #define PCA9685_SUBADR2 0x3 #define PCA9685_SUBADR3 0x4 #define PCA9685_MODE1 0x0 #define PCA9685_PRESCALE 0xFE #define LED0_ON_L 0x6 #define LED0_ON_H 0x7 #define LED0_OFF_L 0x8 #define LED0_OFF_H 0x9 #define ALLLED_ON_L 0xFA #define ALLLED_ON_H 0xFB #define ALLLED_OFF_L 0xFC #define ALLLED_OFF_H 0xFD #define u8 unsigned char #define u16 char ```
OpenCV PCA人脸识别时欧氏距离的问题
我用PCA+SVM方式对ORL人脸库进行人脸识别,使用Opencv的PCA库进行降维及特征提取,提取后的特征用于SVM训练,如果每人用两个图进行学习,最终测试样本的识别率能到85%+。 但是我如果用测试样本的特征向量和训练样本的特征向量进行欧式距离(NORM_L2)的计算,计算结果十分没有规律,不管是不是同一个人的特征,距离从一千多到四千多的都有。这种情况十分不合理呀,opencv还有个基于PCA样本距离的特征脸识别库不就是用L2距离进行比较来进行识别的吗?鉴于此我又实验了一下使用opencv的特征脸识别库EigenFaceRecognizer进行人脸识别,同样的样本划分,但是不自己写特征提取代码,直接输入原始图片,因为特提取的工作是特征脸库自己做的,识别率也能到80%+。 总结起来问题就是,我用PCA提取的特征进行SVM人脸识别,效果还可以,但是直接用测试样本的特征值和训练样本的特征值进行距离比较,却并不能得出同一人的样本距离会比较近,不同人的会比较远的结果,和特征脸识别的工作原理不符。不知是哪里有问题,求解!
求教matlab关于pca降维的问题
我想用30*3000的一组数据经pca降维之后使用lssvm来建模,然后用11*3000的一组数据来检验这个模型。 我想问的是,经过pca降维,30*3000的矩阵变成了30*29的矩阵,但是检验的数据经过pca降维之后成为了11*10的矩阵,这样还能检验吗?
为什么说pca是一种在最小均方差意义下的最佳数据表现形式 ?
为什么说pca是一种在最小均方差意义下的最佳数据表现形式 ?
opencv3.2.0下pca.cpp编译后命令行该如何输入?
我用的环境是linux ubuntu+opencv3.2.0,其pca.cpp已经用cmake编译成功,但是执行总是报命令行错误,求解命令行应该如何输入,举例最好。pca.cpp源码如下:/* * pca.cpp * * Author: * Kevin Hughes <kevinhughes27[at]gmail[dot]com> * * Special Thanks to: * Philipp Wagner <bytefish[at]gmx[dot]de> * * This program demonstrates how to use OpenCV PCA with a * specified amount of variance to retain. The effect * is illustrated further by using a trackbar to * change the value for retained varaince. * * The program takes as input a text file with each line * begin the full path to an image. PCA will be performed * on this list of images. The author recommends using * the first 15 faces of the AT&T face data set: * http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html * * so for example your input text file would look like this: * * <path_to_at&t_faces>/orl_faces/s1/1.pgm * <path_to_at&t_faces>/orl_faces/s2/1.pgm * <path_to_at&t_faces>/orl_faces/s3/1.pgm * <path_to_at&t_faces>/orl_faces/s4/1.pgm * <path_to_at&t_faces>/orl_faces/s5/1.pgm * <path_to_at&t_faces>/orl_faces/s6/1.pgm * <path_to_at&t_faces>/orl_faces/s7/1.pgm * <path_to_at&t_faces>/orl_faces/s8/1.pgm * <path_to_at&t_faces>/orl_faces/s9/1.pgm * <path_to_at&t_faces>/orl_faces/s10/1.pgm * <path_to_at&t_faces>/orl_faces/s11/1.pgm * <path_to_at&t_faces>/orl_faces/s12/1.pgm * <path_to_at&t_faces>/orl_faces/s13/1.pgm * <path_to_at&t_faces>/orl_faces/s14/1.pgm * <path_to_at&t_faces>/orl_faces/s15/1.pgm * */ #include <iostream> #include <fstream> #include <sstream> #include <opencv2/core.hpp> #include "opencv2/imgcodecs.hpp" #include <opencv2/highgui.hpp> using namespace cv; using namespace std; /////////////////////// // Functions static void read_imgList(const string& filename, vector<Mat>& images) { std::ifstream file(filename.c_str(), ifstream::in); if (!file) { string error_message = "No valid input file was given, please check the given filename."; CV_Error(Error::StsBadArg, error_message); } string line; while (getline(file, line)) { images.push_back(imread(line, 0)); } } static Mat formatImagesForPCA(const vector<Mat> &data) { Mat dst(static_cast<int>(data.size()), data[0].rows*data[0].cols, CV_32F); for(unsigned int i = 0; i < data.size(); i++) { Mat image_row = data[i].clone().reshape(1,1); Mat row_i = dst.row(i); image_row.convertTo(row_i,CV_32F); } return dst; } static Mat toGrayscale(InputArray _src) { Mat src = _src.getMat(); // only allow one channel if(src.channels() != 1) { CV_Error(Error::StsBadArg, "Only Matrices with one channel are supported"); } // create and return normalized image Mat dst; cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); return dst; } struct params { Mat data; int ch; int rows; PCA pca; string winName; }; static void onTrackbar(int pos, void* ptr) { cout << "Retained Variance = " << pos << "% "; cout << "re-calculating PCA..." << std::flush; double var = pos / 100.0; struct params *p = (struct params *)ptr; p->pca = PCA(p->data, cv::Mat(), PCA::DATA_AS_ROW, var); Mat point = p->pca.project(p->data.row(0)); Mat reconstruction = p->pca.backProject(point); reconstruction = reconstruction.reshape(p->ch, p->rows); reconstruction = toGrayscale(reconstruction); imshow(p->winName, reconstruction); cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl; } /////////////////////// // Main int main(int argc, char** argv) { cv::CommandLineParser parser(argc, argv, "{@input||image list}{help h||show help message}"); if (parser.has("help")) { parser.printMessage(); exit(0); } // Get the path to your CSV. string imgList = parser.get<string>("@input"); if (imgList.empty()) { parser.printMessage(); exit(1); } // vector to hold the images vector<Mat> images; // Read in the data. This can fail if not valid try { read_imgList(imgList, images); } catch (cv::Exception& e) { cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl; exit(1); } // Quit if there are not enough images for this demo. if(images.size() <= 1) { string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; CV_Error(Error::StsError, error_message); } // Reshape and stack images into a rowMatrix Mat data = formatImagesForPCA(images); // perform PCA PCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance // Demonstration of the effect of retainedVariance on the first image Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point" Mat reconstruction = pca.backProject(point); // re-create the image from the "point" reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes // init highgui window string winName = "Reconstruction | press 'q' to quit"; namedWindow(winName, WINDOW_NORMAL); // params struct to pass to the trackbar handler params p; p.data = data; p.ch = images[0].channels(); p.rows = images[0].rows; p.pca = pca; p.winName = winName; // create the tracbar int pos = 95; createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p); // display until user presses q imshow(winName, reconstruction); char key = 0; while(key != 'q') key = (char)waitKey(); return 0; } 看了半天,刚开始学习C++,不太懂,望前辈给个傻瓜都能看懂的解答。
关于PCA和KPCA的特征向量的维数问题~
想问一下PCA算出来的特征向量是和样本属性的维数一样,因为主成分是原来样本属性的线性组合,那么KPCA求出来的特征向量(利用核函数),为什么维数等于样本数呢?
求大神帮忙,在MATLAB上用pca算法读入一组数据,分析处理结果
求一个代码,数据是一个word表格,大约读入5000个数据,谢谢啊
opencv pca投影 得到的特征脸问题
用opencv进行人脸识别,在训练阶段利用opencv自带的函数cvCalcEigenObjects获取pca的子空间,代码如下: cvCalcEigenObjects( nTrainFaces, //参加训练的图片 (void*)faceImgArr, //得到的特征脸 (void*)eigenVectArr, CV_EIGOBJ_NO_CALLBACK, 0, 0, &calcLimit, //得到的平均脸 pAvgTrainImg, eigenValMat->data.fl ); 执行该函数后,用cvShowImage()进行特征脸eigenVectArr的显示,特征脸显示结果都是一片漆黑,看网页上正常显示的特征脸应该是这样的吧[图片说明](https://img-ask.csdn.net/upload/201501/30/1422597863_788733.png) 而且我得出的平均脸pAvgTraining显示为一张白色图片,也是什么都没有的。 我用的人脸库是jaffe,想问下各位大神是什么原因导致无法得出特征脸和平均脸? 在此谢过。
树莓派I2C本来舵机能动,供电不足加了个电源,更新,就报错IOError: [Errno 5] Input/output error
现在 sudo i2cdetect -y 1搜索不到i2c, 树莓派接的一块板子,板子上面接SG90舵机。 12V10A的电池 降压到5V6A ![图片说明](https://img-ask.csdn.net/upload/201810/26/1540554654_579201.jpg) 刚接完电池和降压模块的时候,I2C的板子冒了点烟,但一点都不烫,电池、降压块都不烫,只有树莓主板很烫。 打开I2C选项enable时不小心点到了更新。 昨天还能启动,舵机能动,代码没动过,唯一的改动好像就是加了电源附带降压,和更新了一下,别的没动过啊!!搞了几天了解决不了,求大佬帮忙,拜谢了OTL,感激不尽 Traceback (most recent call last): File "main.py", line 17, in <module> pwm[0] = Adafruit_PCA9685.PCA9685(address=0x40,busnum=1) File "build/bdist.linux-armv7l/egg/Adafruit_PCA9685/PCA9685.py", line 75, in __init__ File "build/bdist.linux-armv7l/egg/Adafruit_PCA9685/PCA9685.py", line 111, in set_all_pwm File "build/bdist.linux-armv7l/egg/Adafruit_GPIO/I2C.py", line 116, in write8 File "build/bdist.linux-armv7l/egg/Adafruit_PureIO/smbus.py", line 256, in write_byte_data IOError: [Errno 5] Input/output error 该装的都装了,也不应该缺啥呀,原来就能动啊 这个正负极看起来接错了,其实红线都接在最下面第三个针脚,只是贴纸标识和针脚错位了
主成分分析降维会影响到机器学习的精度么?
![图片说明](https://img-ask.csdn.net/upload/201907/18/1563440089_697335.png) 我使用五种方法同时对原始数据和主成分分析PCA处理之后的数据进行分析,并且进行回判和预测,发现SVM和神经网络前后变化不大,但是XGBoost、AdaBoost以及Bayes的成功率反而有所降低,请问是不是因为这几个方法不适合主成分分析降维?
关于PCA主成分分析32个指标,10年的数据,能做吗??
为什么我用R语言显示错误,指标数不能多于数据啊???????????????????????????
如何用pea在matlab上分析数据,例如;iris
哪里能找到关于用matlab进行数据分析的案例, 尤其是pca,lsa这些?尤其是如何对data进行预处理?
基于先验方向的pca算法
假如存在一个已知的方向,在其正交方向寻找一个能最大程度反映原有信息的方向,怎么实现?
MATLAB 中PCA特征提取用LDA和PLS代替的代码
function [Xs_new,Xt_new,G] = GFK_Map(Xs,Xt,dim) Ps = pca(Xs); Pt = pca(Xt); G = GFK_core([Ps,null(Ps')], Pt(:,1:dim)); sq_G = real(G); Xs_new = (sq_G * Xs')'; Xt_new = (sq_G * Xt')'; end 这里用PCA特征提取Xs和Xt,得到一个特征的转化矩阵(COEFF) ,这个矩阵在MATLAB里面 叫COEFF,是个n*n,n为原矩阵的维度,我想用LDA或者PLS代替或者有更好的特征提取方式,提取到这个类似COEFF的转化矩阵,代码都可以。
sparkMLlib PCA降维后的数据与原来的数据不一样了,怎么使用sparkMLlib PCA降维后得到数据?
原始数据矩阵如下 // 原始数据 val arr = Array( Vectors.dense(4.0,1.0, 4.0, 5.0), Vectors.dense(2.0,3.0, 4.0, 5.0), Vectors.dense(4.0,0.0, 6.0, 7.0)) 降维后的数据如下: [-5.061524965038313,2.6731387750445608] [-7.489827262491891,4.4347709591799624] [-2.9078143281202276,4.506586481532503] spark PCA处理后的数据代表什么意思,和原来的数据不一样,怎么利用这个数据,比如我想对它做线性回归?
子网1中的PCa和子网2中的PCb 怎么建立网络连接,相互通信?
子网1中的PCa和子网2中的PCb 怎么建立网络连接,相互通信?而且真心不明白编程socket通信上是怎么解决这个问题的。
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、PDF搜索网站推荐 对于大部
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 顺便拉下票,我在参加csdn博客之星竞选,欢迎投票支持,每个QQ或者微信每天都可以投5票,扫二维码即可,http://m234140.nofollow.ax.
Vue + Spring Boot 项目实战(十四):用户认证方案与完善的访问拦截
本篇文章主要讲解 token、session 等用户认证方案的区别并分析常见误区,以及如何通过前后端的配合实现完善的访问拦截,为下一步权限控制的实现打下基础。
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入  假设现有4个人
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 欢迎 改进 留言。 演示地点跳到演示地点 html代码如下`&lt;!DOCTYPE html&gt; &lt;html&gt; &lt;head&gt; &lt;title&gt;music&lt;/title&gt; &lt;meta charset="utf-8"&gt
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。 1. for - else 什么?不是 if 和 else 才
数据库优化 - SQL优化
前面一篇文章从实例的角度进行数据库优化,通过配置一些参数让数据库性能达到最优。但是一些“不好”的SQL也会导致数据库查询变慢,影响业务流程。本文从SQL角度进行数据库优化,提升SQL运行效率。 判断问题SQL 判断SQL是否有问题时可以通过两个表象进行判断: 系统级别表象 CPU消耗严重 IO等待严重 页面响应时间过长
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 c/c++ 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7
通俗易懂地给女朋友讲:线程池的内部原理
餐厅的约会 餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”我楞了一下,心里想女朋友今天是怎么了,怎么突然问出这么专业的问题,但做为一个专业人士在女朋友面前也不能露怯啊,想了一下便说:“我先给你讲讲我前同事老王的故事吧!” 大龄程序员老王 老王是一个已经北漂十多年的程序员,岁数大了,加班加不动了,升迁也无望,于是拿着手里
经典算法(5)杨辉三角
写在前面: 我是 扬帆向海,这个昵称来源于我的名字以及女朋友的名字。我热爱技术、热爱开源、热爱编程。技术是开源的、知识是共享的。 这博客是对自己学习的一点点总结及记录,如果您对 Java、算法 感兴趣,可以关注我的动态,我们一起学习。 用知识改变命运,让我们的家人过上更好的生活。 目录一、杨辉三角的介绍二、杨辉三角的算法思想三、代码实现1.第一种写法2.第二种写法 一、杨辉三角的介绍 百度
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹
面试官:你连RESTful都不知道我怎么敢要你?
面试官:了解RESTful吗? 我:听说过。 面试官:那什么是RESTful? 我:就是用起来很规范,挺好的 面试官:是RESTful挺好的,还是自我感觉挺好的 我:都挺好的。 面试官:… 把门关上。 我:… 要干嘛?先关上再说。 面试官:我说出去把门关上。 我:what ?,夺门而去 文章目录01 前言02 RESTful的来源03 RESTful6大原则1. C-S架构2. 无状态3.统一的接
SQL-小白最佳入门sql查询一
一 说明 如果是初学者,建议去网上寻找安装Mysql的文章安装,以及使用navicat连接数据库,以后的示例基本是使用mysql数据库管理系统; 二 准备前提 需要建立一张学生表,列分别是id,名称,年龄,学生信息;本示例中文章篇幅原因SQL注释略; 建表语句: CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // dosho
漫话:什么是平衡(AVL)树?这应该是把AVL树讲的最好的文章了
这篇文章通过对话的形式,由浅入深带你读懂 AVL 树,看完让你保证理解 AVL 树的各种操作,如果觉得不错,别吝啬你的赞哦。 1、若它的左子树不为空,则左子树上所有的节点值都小于它的根节点值。 2、若它的右子树不为空,则右子树上所有的节点值均大于它的根节点值。 3、它的左右子树也分别可以充当为二叉查找树。 例如: 例如,我现在想要查找数值为14的节点。由于二叉查找树的特性,我们可...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,
程序员:我终于知道post和get的区别
IT界知名的程序员曾说:对于那些月薪三万以下,自称IT工程师的码农们,其实我们从来没有把他们归为我们IT工程师的队伍。他们虽然总是以IT工程师自居,但只是他们一厢情愿罢了。 此话一出,不知激起了多少(码农)程序员的愤怒,却又无可奈何,于是码农问程序员。 码农:你知道get和post请求到底有什么区别? 程序员:你看这篇就知道了。 码农:你月薪三万了? 程序员:嗯。 码农:你是怎么做到的? 程序员:
《程序人生》系列-这个程序员只用了20行代码就拿了冠军
你知道的越多,你不知道的越多 点赞再看,养成习惯GitHub上已经开源https://github.com/JavaFamily,有一线大厂面试点脑图,欢迎Star和完善 前言 这一期不算《吊打面试官》系列的,所有没前言我直接开始。 絮叨 本来应该是没有这期的,看过我上期的小伙伴应该是知道的嘛,双十一比较忙嘛,要值班又要去帮忙拍摄年会的视频素材,还得搞个程序员一天的Vlog,还要写BU
开源并不是你认为的那些事
点击上方蓝字 关注我们开源之道导读所以 ————想要理清开源是什么?先要厘清开源不是什么,名正言顺是句中国的古代成语,概念本身的理解非常之重要。大部分生物多样性的起源,...
加快推动区块链技术和产业创新发展,2019可信区块链峰会在京召开
      11月8日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会、可信区块链推进计划联合主办,科技行者协办的2019可信区块链峰会将在北京悠唐皇冠假日酒店开幕。   区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术。如果说蒸汽机释放了人类的生产力,电力解决了人类基本的生活需求,互联网彻底改变了信息传递的方式,区块链作为构造信任的技术有重要的价值。   1
程序员把地府后台管理系统做出来了,还有3.0版本!12月7号最新消息:已在开发中有github地址
第一幕:缘起 听说阎王爷要做个生死簿后台管理系统,我们派去了一个程序员…… 996程序员做的梦: 第一场:团队招募 为了应对地府管理危机,阎王打算找“人”开发一套地府后台管理系统,于是就在地府总经办群中发了项目需求。 话说还是中国电信的信号好,地府都是满格,哈哈!!! 经常会有外行朋友问:看某网站做的不错,功能也简单,你帮忙做一下? 而这次,面对这样的需求,这个程序员
网易云6亿用户音乐推荐算法
网易云音乐是音乐爱好者的集聚地,云音乐推荐系统致力于通过 AI 算法的落地,实现用户千人千面的个性化推荐,为用户带来不一样的听歌体验。 本次分享重点介绍 AI 算法在音乐推荐中的应用实践,以及在算法落地过程中遇到的挑战和解决方案。 将从如下两个部分展开: AI 算法在音乐推荐中的应用 音乐场景下的 AI 思考 从 2013 年 4 月正式上线至今,网易云音乐平台持续提供着:乐屏社区、UGC
【技巧总结】位运算装逼指南
位算法的效率有多快我就不说,不信你可以去用 10 亿个数据模拟一下,今天给大家讲一讲位运算的一些经典例子。不过,最重要的不是看懂了这些例子就好,而是要在以后多去运用位运算这些技巧,当然,采用位运算,也是可以装逼的,不信,你往下看。我会从最简单的讲起,一道比一道难度递增,不过居然是讲技巧,那么也不会太难,相信你分分钟看懂。 判断奇偶数 判断一个数是基于还是偶数,相信很多人都做过,一般的做法的代码如下
《C++ Primer》学习笔记(六):C++模块设计——函数
专栏C++学习笔记 《C++ Primer》学习笔记/习题答案 总目录 https://blog.csdn.net/TeFuirnever/article/details/100700212 —————————————————————————————————————————————————————— 《C++ Primer》习题参考答案:第6章 - C++模块设计——函数 文章目录专栏C+...
8年经验面试官详解 Java 面试秘诀
    作者 | 胡书敏 责编 | 刘静 出品 | CSDN(ID:CSDNnews) 本人目前在一家知名外企担任架构师,而且最近八年来,在多家外企和互联网公司担任Java技术面试官,前后累计面试了有两三百位候选人。在本文里,就将结合本人的面试经验,针对Java初学者、Java初级开发和Java开发,给出若干准备简历和准备面试的建议。   Java程序员准备和投递简历的实
面试官如何考察你的思维方式?
1.两种思维方式在求职面试中,经常会考察这种问题:北京有多少量特斯拉汽车? 某胡同口的煎饼摊一年能卖出多少个煎饼? 深圳有多少个产品经理? 一辆公交车里能装下多少个乒乓球? 一
so easy! 10行代码写个"狗屁不通"文章生成器
前几天,GitHub 有个开源项目特别火,只要输入标题就可以生成一篇长长的文章。背后实现代码一定很复杂吧,里面一定有很多高深莫测的机器学习等复杂算法不过,当我看了源代码之后这程序不到50
知乎高赞:中国有什么拿得出手的开源软件产品?(整理自本人原创回答)
知乎高赞:中国有什么拿得出手的开源软件产品? 在知乎上,有个问题问“中国有什么拿得出手的开源软件产品(在 GitHub 等社区受欢迎度较好的)?” 事实上,还不少呢~ 本人于2019.7.6进行了较为全面的 回答 - Bravo Yeung,获得该问题下回答中得最高赞(236赞和1枚专业勋章),对这些受欢迎的 Github 开源项目分类整理如下: 分布式计算、云平台相关工具类 1.SkyWalk
相关热词 c# clr dll c# 如何orm c# 固定大小的字符数组 c#框架设计 c# 删除数据库 c# 中文文字 图片转 c# 成员属性 接口 c#如何将程序封装 16进制负数转换 c# c#练手项目
立即提问