在进行model fit的时候遇到报错ValueError: Layer sequentia expects 1 inputs, but it received 2 input tensors.
我用的代码是model.fit(X_train,Y_train,batch_size=600,epochs=1,verbose=1,validation_data=[X_test,Y_test])
老师给的代码是
明明一模一样哇。这是问什么呀
具体的错误代码为:
100/100 [==============================] - ETA: 0s - loss: 0.1040 - accuracy: 0.9690
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-23-960c89dbb231> in <module> ----> 1 model.fit(X_train,Y_train,batch_size=600,epochs=1,verbose=1, 2 validation_data=[X_test,Y_test]) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs) 106 def _method_wrapper(self, *args, **kwargs): 107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access --> 108 return method(self, *args, **kwargs) 109 110 # Running inside `run_distribute_coordinator` already. E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing) 1121 model=self, 1122 steps_per_execution=self._steps_per_execution) -> 1123 val_logs = self.evaluate( 1124 x=val_x, 1125 y=val_y, E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs) 106 def _method_wrapper(self, *args, **kwargs): 107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access --> 108 return method(self, *args, **kwargs) 109 110 # Running inside `run_distribute_coordinator` already. E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py in evaluate(self, x, y, batch_size, verbose, sample_weight, steps, callbacks, max_queue_size, workers, use_multiprocessing, return_dict) 1377 with trace.Trace('TraceContext', graph_type='test', step_num=step): 1378 callbacks.on_test_batch_begin(step) -> 1379 tmp_logs = test_function(iterator) 1380 if data_handler.should_sync: 1381 context.async_wait() E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds) 778 else: 779 compiler = "nonXla" --> 780 result = self._call(*args, **kwds) 781 782 new_tracing_count = self._get_tracing_count() E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds) 821 # This is the first call of __call__, so we have to initialize. 822 initializers = [] --> 823 self._initialize(args, kwds, add_initializers_to=initializers) 824 finally: 825 # At this point we know that the initialization is complete (or less E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to) 694 self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph) 695 self._concrete_stateful_fn = ( --> 696 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access 697 *args, **kwds)) 698 E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs) 2853 args, kwargs = None, None 2854 with self._lock: -> 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs) 2856 return graph_function 2857 E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs) 3211 3212 self._function_cache.missed.add(call_context_key) -> 3213 graph_function = self._create_graph_function(args, kwargs) 3214 self._function_cache.primary[cache_key] = graph_function 3215 return graph_function, args, kwargs E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3063 arg_names = base_arg_names + missing_arg_names 3064 graph_function = ConcreteFunction( -> 3065 func_graph_module.func_graph_from_py_func( 3066 self._name, 3067 self._python_function, E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 984 _, original_func = tf_decorator.unwrap(python_func) 985 --> 986 func_outputs = python_func(*func_args, **func_kwargs) 987 988 # invariant: `func_outputs` contains only Tensors, CompositeTensors, E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds) 598 # __wrapped__ allows AutoGraph to swap in a converted function. We give 599 # the function a weak reference to itself to avoid a reference cycle. --> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds) 601 weak_wrapped_fn = weakref.ref(wrapped_fn) 602 E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs) 971 except Exception as e: # pylint:disable=broad-except 972 if hasattr(e, "ag_error_metadata"): --> 973 raise e.ag_error_metadata.to_exception(e) 974 else: 975 raise ValueError: in user code: E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py:1224 test_function * return step_function(self, iterator) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py:1215 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica return fn(*args, **kwargs) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py:1208 run_step ** outputs = model.test_step(data) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\training.py:1174 test_step y_pred = self(x, training=False) E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:975 __call__ input_spec.assert_input_compatibility(self.input_spec, inputs, E:\Software\Anaconda\envs\Env-CV\lib\site-packages\tensorflow\python\keras\engine\input_spec.py:155 assert_input_compatibility raise ValueError('Layer ' + layer_name + ' expects ' + ValueError: Layer sequential_1 expects 1 inputs, but it received 2 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, 28, 28, 1) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(None, 10) dtype=float32>]
帮帮孩子吧!!!!!