小约翰克涵 2022-07-13 22:40 采纳率: 42.9%
浏览 794
已结题

No such file or directory: 'saved_model_weight/resnet34_pretrain_ori_low_torch_version.pth'

报错信息:

Traceback (most recent call last):
  File "D:/OpenCVLearning-main/项目实战三_停车场车位识别/main.py", line 32, in <module>
    train_model()
  File "D:\OpenCVLearning-main\项目实战三_停车场车位识别\train.py", line 24, in train_model
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
  File "D:\Anaconda3\envs\PyTorch\lib\site-packages\torch\serialization.py", line 699, in load
    with _open_file_like(f, 'rb') as opened_file:
  File "D:\Anaconda3\envs\PyTorch\lib\site-packages\torch\serialization.py", line 231, in _open_file_like
    return _open_file(name_or_buffer, mode)
  File "D:\Anaconda3\envs\PyTorch\lib\site-packages\torch\serialization.py", line 212, in __init__
    super(_open_file, self).__init__(open(name, mode))
FileNotFoundError: [Errno 2] No such file or directory: 'saved_model_weight/resnet34_pretrain_ori_low_torch_version.pth'

train.py代码

import os
import torch
import torch.nn as nn
from torchvision.models import resnet34
import torch.optim as optim

from utils.model_utils import get_dataloader, data_transform_pretrain, model_train

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train_model():
    # 获取dataloader
    data_root = os.getcwd()
    image_path = os.path.join(data_root, "train_data")
    train_data_path = os.path.join(image_path, "train")
    val_data_path = os.path.join(image_path, "test")
    train_loader, validat_loader, train_num, val_num = get_dataloader(train_data_path, val_data_path,
                                                                      data_transform_pretrain, batch_size=8)

    # 创建模型 注意这里没指定类的个数,默认是1000类
    net = resnet34()
    model_weight_path = 'saved_model_weight/resnet34_pretrain_ori_low_torch_version.pth'

    # 使用预训练的参数,然后进行finetune
    net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    # 改变fc layer structure  把fc的输出维度改为2
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 2)
    net.to(device)

    # 模型训练配置
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0001)

    epochs = 30
    save_path = "saved_model_weight/resnet34_pretrain.pth"
    best_acc = 0.
    train_steps = len(train_loader)

    model_train(net, train_loader, validat_loader, epochs, device, optimizer, loss_function, train_steps, val_num,
                save_path, best_acc)

main.py代码

import torch
import os
# golb模块是用来查找符合特定规则命名的文件名的“路径+文件名”,其功能就是检索路径
import glob
import cv2
import pickle
import json
from PIL import Image
import matplotlib.pyplot as plt

from data_process import data_process
from train import train_model
from torchvision.models import resnet34
from predict_on_spot_img import predict_on_img
from predict_on_spot_video import predict_on_video

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if __name__ == '__main__':

    # 如果没有停车位字典,先生成字典
    if not os.path.exists('spot_dict.pickle'):
        # 读入数据
        test_images = [cv2.imread(path) for path in glob.glob('test_images/*.jpg')]  # BGR
        spot_dict = data_process(test_images[1])
    else:
        spot_dict = pickle.load(open('spot_dict.pickle', 'rb'))

    # 读取训练好的ResNet模型
    if not os.path.exists('saved_model_weight/resnet34_pretrain.pth'):
        # 调用train函数训练模型
        train_model()
    else:
        # read class_indict
        json_path = './idx2class.json'
        assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
        json_file = open(json_path, "r")
        class_indict = json.load(json_file)

        # 导入与训练好的模型
        model = resnet34(num_classes=2).to(device)
        weights_path = "saved_model_weight/resnet34_pretrain.pth"
        model.load_state_dict(torch.load(weights_path))

        # 预测一张停车场的图片
        #img = plt.imread('test_images/scene1380.jpg')
        #predict_on_img(img, spot_dict, model, class_indict)

        # 预测parking_video.mp4
        video_path = 'video/parking_video.mp4'
        predict_on_video(video_path, spot_dict, model, class_indict)

电脑配置:2GB 的GPU,是不是要修改一些函数的参数

img


目前没有进行模型训练,要训练,但以现在来看是没训练成功

  • 写回答

2条回答 默认 最新

  • 广大菜鸟 2022-07-13 22:44
    关注

    FileNotFoundError: [Errno 2] No such file or directory: 'saved_model_weight/resnet34_pretrain_ori_low_torch_version.pth'
    你训练好的模型保存的文件有在?路径出错了或不存在

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

问题事件

  • 系统已结题 7月22日
  • 已采纳回答 7月14日
  • 修改了问题 7月13日
  • 修改了问题 7月13日
  • 展开全部

悬赏问题

  • ¥15 WPF动态创建页面内容
  • ¥15 如何对TBSS的结果进行统计学的分析已完成置换检验,如何在最终的TBSS输出结果提取除具体值及如何做进一步相关性分析
  • ¥15 SQL数据库操作问题
  • ¥100 关于lm339比较电路出现的问题
  • ¥15 Matlab安装yalmip和cplex功能安装失败
  • ¥15 加装宝马安卓中控改变开机画面
  • ¥15 STK安装问题问问大家,这种情况应该怎么办
  • ¥15 关于罗技鼠标宏lua文件的问题
  • ¥15 halcon ocr mlp 识别问题
  • ¥15 已知曲线满足正余弦函数,根据其峰值,还原出整条曲线