weixin_51573847 2022-09-22 13:00 采纳率: 77.3%
浏览 116
已结题

python 中numpy的矩阵函数

通过python判断一个矩阵是否是不相容的,并且再写一个backsubstitution函数,来解出矩阵.判断是否是不相容(inconsistent)需要用numpy.nonzero方法

import numpy as np
import warnings

def swapRows(A, i, j):
    """
    interchange two rows of A
    operates on A in place
    """
    tmp = A[i].copy()
    A[i] = A[j]
    A[j] = tmp

def relError(a, b):
    """
    compute the relative error of a and b
    """
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        try:
            return np.abs(a-b)/np.max(np.abs(np.array([a, b])))
        except:
            return 0.0

def rowReduce(A, i, j, pivot):
    """
    reduce row j using row i with pivot pivot, in matrix A
    operates on A in place
    """
    factor = A[j][pivot] / A[i][pivot]
    for k in range(len(A[j])):
        if np.isclose(A[j][k], factor * A[i][k]):
            A[j][k] = 0.0
        else:
            A[j][k] = A[j][k] - factor * A[i][k]


# stage 1 (forward elimination)
def forwardElimination(B):
    """
    Return the row echelon form of B
    """
    A = B.copy().astype(float)
    m, n = np.shape(A)
    for i in range(m-1):
        # Let lefmostNonZeroCol be the position of the leftmost nonzero value 
        # in row i or any row below it 
        leftmostNonZeroRow = m
        leftmostNonZeroCol = n
        ## for each row below row i (including row i)
        for h in range(i,m):
            ## search, starting from the left, for the first nonzero
            for k in range(i,n):
                if (A[h][k] != 0.0) and (k < leftmostNonZeroCol):
                    leftmostNonZeroRow = h
                    leftmostNonZeroCol = k
                    break
        # if there is no such position, stop
        if leftmostNonZeroRow == m:
            break
        # If the leftmostNonZeroCol in row i is zero, swap this row 
        # with a row below it
        # to make that position nonzero. This creates a pivot in that position.
        if (leftmostNonZeroRow > i):
            swapRows(A, leftmostNonZeroRow, i)
        # Use row reduction operations to create zeros in all positions 
        # below the pivot.
        for h in range(i+1,m):
            rowReduce(A, i, h, leftmostNonZeroCol)
    return A

#################### 

# If any operation creates a row that is all zeros except the last element,
# the system is inconsistent; stop.
def inconsistentSystem(A):
    # 判断一个矩阵是否是不相容的,只能用numpy的nonzero方法



def backsubstitution(B):
    """
    return the reduced row echelon form matrix of B
    """



#####################
# 测试的值
a = np.array([[1, 2, 3,24], [5, 4, 6,24], [10, 9, 8,9]])
backsubstitution(a)
# 最后的结果应该是[1,0,0,-8],[0,1,0,1],[0,0,1,10]

只用写最后两个函数就好了,之前写完了

  • 写回答

6条回答 默认 最新

  • ·星辰大海 2022-09-22 13:50
    关注
    
    import numpy as np
    import warnings
    
    
    def swapRows(A, i, j):
        """
        interchange two rows of A
        operates on A in place
        """
        tmp = A[i].copy()
        A[i] = A[j]
        A[j] = tmp
    
    
    def relError(a, b):
        """
        compute the relative error of a and b
        """
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            try:
                return np.abs(a - b) / np.max(np.abs(np.array([a, b])))
            except:
                return 0.0
    
    
    def rowReduce(A, i, j, pivot):
        """
        reduce row j using row i with pivot pivot, in matrix A
        operates on A in place
        """
        factor = A[j][pivot] / A[i][pivot]
        for k in range(len(A[j])):
            if np.isclose(A[j][k], factor * A[i][k]):
                A[j][k] = 0.0
            else:
                A[j][k] = A[j][k] - factor * A[i][k]
    
    
    # stage 1 (forward elimination)
    def forwardElimination(B):
        """
        Return the row echelon form of B
        """
        A = B.copy().astype(float)
        m, n = np.shape(A)
        for i in range(m - 1):
            # Let lefmostNonZeroCol be the position of the leftmost nonzero value
            # in row i or any row below it
            leftmostNonZeroRow = m
            leftmostNonZeroCol = n
            ## for each row below row i (including row i)
            for h in range(i, m):
                ## search, starting from the left, for the first nonzero
                for k in range(i, n):
                    if (A[h][k] != 0.0) and (k < leftmostNonZeroCol):
                        leftmostNonZeroRow = h
                        leftmostNonZeroCol = k
                        break
            # if there is no such position, stop
            if leftmostNonZeroRow == m:
                break
            # If the leftmostNonZeroCol in row i is zero, swap this row
            # with a row below it
            # to make that position nonzero. This creates a pivot in that position.
            if (leftmostNonZeroRow > i):
                swapRows(A, leftmostNonZeroRow, i)
            # Use row reduction operations to create zeros in all positions
            # below the pivot.
            for h in range(i + 1, m):
                rowReduce(A, i, h, leftmostNonZeroCol)
        return A
    
    
    ####################
    
    # If any operation creates a row that is all zeros except the last element,
    # the system is inconsistent; stop.
    def inconsistentSystem(A):
        temp = forwardElimination(A)
        return max(np.nonzero(temp[:, :-1])[0]) != max(np.nonzero(temp)[0])
    
    
    # 判断一个矩阵是否是不相容的,只能用numpy的nonzero方法
    
    ##原文链接:https://blog.csdn.net/mr_jjpolarbear/article/details/88649587
    def rsmat(arbmat):
        """ Convert an arbitrary matrix to a simplest matrix """
        arbmat = arbmat.astype(float)
        row_number, column_number = arbmat.shape
        if row_number == 1:
            if arbmat[0, 0] != 0:
                return (arbmat / arbmat[0, 0])
            else:
                return arbmat
        else:
            rc_number = min(row_number, column_number)
            anarbmat = arbmat.copy()
            r = 0
            for n in range(rc_number):
                s_row = -1
                for i in arbmat[r:row_number, n]:
                    s_row += 1
                    if abs(i) > 1e-10:
                        anarbmat[r, :] = arbmat[s_row + r, :]
                        for j in range(r, row_number):
                            if j < s_row + r:
                                anarbmat[j + 1, :] = arbmat[j, :]
                        arbmat = anarbmat.copy()
                if abs(anarbmat[r, n]) > 1e-10:
                    anarbmat[r, :] = anarbmat[r, :] / anarbmat[r, n]
                    for i in range(row_number):
                        if i != r:
                            anarbmat[i, :] -= \
                                anarbmat[i, n] * anarbmat[r, :]
                arbmat = anarbmat.copy()
                if abs(arbmat[r, n]) < 1e-10:
                    r = r
                else:
                    r = r + 1
            for m in range(column_number):
                if abs(arbmat[-1, m]) > 1e-10:
                    arbmat[-1, :] = arbmat[-1, :] / arbmat[-1, m]
                    for i in range(row_number - 1):
                        arbmat[i, :] -= \
                            arbmat[i, m] * arbmat[-1, :]
                    break
    
            return arbmat
    
    
    def backsubstitution(B):
        """
        return the reduced row echelon form matrix of B
        """
        if not inconsistentSystem(B):
            return rsmat(B)
    
    
    #####################
    # 测试的值
    a = np.array([[1, 2, 3, 24], [5, 4, 6, 24], [10, 9, 8, 9]])
    print(backsubstitution(a))
    # 最后的结果应该是[1,0,0,-8],[0,1,0,1],[0,0,1,10]
    
    
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论 编辑记录
查看更多回答(5条)

报告相同问题?

问题事件

  • 系统已结题 9月30日
  • 已采纳回答 9月22日
  • 创建了问题 9月22日

悬赏问题

  • ¥15 wpf datagrid如何实现多层表头
  • ¥15 为啥画版图在Run DRC会出现Connect Error?可我Calibre的hostname和计算机的hostname已经设置成一样的了。
  • ¥20 网站后台使用极速模式非常的卡
  • ¥20 Keil uVision5创建project没反应
  • ¥15 mmseqs内存报错
  • ¥15 vika文档如何与obsidian同步
  • ¥15 华为手机相册里面的照片能够替换成自己想要的照片吗?
  • ¥15 陆空双模式无人机飞控设置
  • ¥15 sentaurus lithography
  • ¥100 求抖音ck号 或者提ck教程