基于深度学习的超声波探伤系统设计MATLAB代码实现,对获得的数据进行降噪,特征提取,BP神经网络进行训练,判断内部损伤。
7条回答 默认 最新
- zuogle 2023-04-11 17:27关注
该回答引用ChatGPT GPT-4
运行结果
代码如下
clear % 加载超声波数据 load('ultrasonic_data.mat'); % 替换为您的数据文件 % 使用小波进行降噪处理 num_samples = size(signal, 1); denoisedSignal = zeros(size(signal)); for i = 1:num_samples denoisedSignal(i, :) = wdenoise(signal(i, :), 5, 'Wavelet', 'db4', 'DenoisingMethod', 'UniversalThreshold'); end % 使用傅里叶变换进行特征提取 num_features = 100; features = abs(fft(denoisedSignal, [], 2)); features = features(:, 1:num_features); % 归一化特征 normalizedFeatures = (features - mean(features, 1)) ./ std(features, 1); % 准备训练和测试数据 trainRatio = 0.8; [trainInd, ~, testInd] = dividerand(size(normalizedFeatures, 1), trainRatio, 0, 1 - trainRatio); trainData = normalizedFeatures(trainInd, :); trainLabels = labels(trainInd); testData = normalizedFeatures(testInd, :); testLabels = labels(testInd); % 创建并训练BP神经网络 hiddenLayerSize = 20; net = patternnet(hiddenLayerSize); net.divideParam.trainRatio = 1; net.divideParam.valRatio = 0; net.divideParam.testRatio = 0; net.trainParam.epochs = 200; net.trainParam.goal = 1e-5; net.trainParam.min_grad = 1e-5; trainTargets = ind2vec(trainLabels'); [net, tr] = train(net, trainData', trainTargets); % 测试网络 predictedLabels = net(testData'); [~, predictedClass] = max(predictedLabels); actualClass = testLabels; accuracy = sum(predictedClass' == actualClass) / length(actualClass); fprintf('Accuracy: %.2f%%\n', accuracy * 100);
本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报
悬赏问题
- ¥15 宇视监控服务器无法登录
- ¥15 PADS Logic 原理图
- ¥15 PADS Logic 图标
- ¥15 电脑和power bi环境都是英文如何将日期层次结构转换成英文
- ¥15 DruidDataSource一直closing
- ¥20 气象站点数据求取中~
- ¥15 如何获取APP内弹出的网址链接
- ¥15 wifi 图标不见了 不知道怎么办 上不了网 变成小地球了
- ¥50 STM32单片机传感器读取错误
- ¥50 power BI 从Mysql服务器导入数据,但连接进去后显示表无数据