CNN神经网络数字识别样本该如何输入?

我参照
做了一个神经网络,在训练样本时出现了问题。我依次将10个不同数字的样本放入训练,即依次放入0_01、1_01..9_01、0_02、1_02...9_02,训练后输入层的输出都是-0.8。我该如何输入样本,还是我的神经网络哪部分出了问题?

1个回答

网络数字识别样本该如何输入?
我参照
做了一个神经网络,在训练样本时出现了问题。我依次将10个不同数字的样本放入训练,即依次放入0_01、1_01..9_01、0_02、1_02...9_02,训练后输入层的输出都是-0.8。我该如何输入样本,还是我的神经网络哪部分出了问题?

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
针对CNN分类识别的问题,用已训练好的网络去识别另一组数据,识别率为0,详细如下请大神解答,真心急急急

CNN模型为AlexNet,平台是MATLAB,由于实验室数据不可外泄,在此用ABC代替 识别原理是对ABC信号进行时频分析,生成时频图像,最为CNN的输入样本 ## 由于信号A较长,将其分为3段,用其中一段(称为A1)和信号B、C组合成一个3个种类的样本集来进行训练测试,识别率良好在97%左右,当保存上述训练好的CNN网络,对信号A2和A3信号进行测试时识别正确率为0,说明A1A2A3为三个种类,CNN无法将其识别成一类,这个可以理解,可能有3段信号的特征不同,但是奇怪的来了!!!!!!!,当把A1A2A3组合成一个3个种类的样本集进行网络训练的时候,识别率只达到35%,那么对于3个种类的样本来讲,这就表示cnn不能把A1A2A3分开,说明他们是一个种类,这样的话前后矛盾了, 针对此问题求大神解答,本人研二马上要毕业,导师临时要我添加此内容,遇到问题十万火急,本人可能才疏学浅,目前确实束手无策,如有能解决的朋友也可私聊,

CNN算法 人脸识别程序代码

哪位大神有基于cnn深度卷积神经网络算法的人脸识别程序代码啊???用Python或是MATLAB都可以啊!!!

关于使用卷积神经网络训练图像识别需要图像集的数量

请问使用卷积神经网络训练图像识别,一般需要多少张图像?一般需要包含多少图像块? 请问大家一般是如何获取这些训练用的图片?感觉ImageNet速度太慢了,国内有没有ImageNet的镜像,或者其他的图像资源网站,多谢了!有没有自己做训练用的图片的?

新人 人脸识别 python opencv.深度学习 有一些概念性问题 求助一下

刚开始接触学习 人脸识别 网上教程有点多和乱。。看了很多东西。 我总结为下面3个问题。 1.pyyhon的cnn卷积神经网络可以直接做人脸识别? 2.python for opencv 可以直接做出人脸识别? 3 python opencv+深度学习cnn 来做出人脸识别。? 根据百度词条 opencv是一个机器视觉库 看了很多文章他里面应该是有传统的识别haar和llbp特征识别出人脸的 而cnn神经网络算法是和opencv中传统算法所不一样的 是一个深度学习的强化 更好的做人脸识别。 我对上述内容怎么说就是比较懵逼啦。。希望有朋友能帮我梳理出几个学习的框架。我好去学习 另外我现在是想在windows上学习。后期想加在树莓派上的linux系统。 谢谢大家!刚开始用csdn....学生党没有钱了 不好意思各位。。

关于基于cnn的图像识别中,对于输入图像预处理的问题

大佬们,请教一个问题,在识别特定场景的时候,我们拿已经训练好的模型去分类,对于输入模型需要进行分类的图像,我们进行一下预处理会不会更好,比如直方图均衡化,滤波这些能让特征更加明显,然后去掉图片噪音的操作。 对于撰写论文而言,这样有没有意义,有写的必要性吗?

手写数字识别,神经网络交叉商结果正确,正确率总是不变

我遇到的问题是,经过训练,测试集的交叉商下降非常快,但是正确率总是不变,真是想不到为什么 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np from tensorflow.contrib.layers import fully_connected from tensorflow.examples.tutorials.mnist import input_data x = tf.placeholder(dtype=tf.float32,shape=[None,784]) y = tf.placeholder(dtype=tf.float32,shape=[None,10]) test_x = tf.placeholder(dtype=tf.float32,shape=[None,784]) test_y = tf.placeholder(dtype=tf.float32,shape=[None,10]) mnist = input_data.read_data_sets("/home/xuenzhu/mnist_data", one_hot=True) hidden1 = fully_connected(x,100,activation_fn=tf.nn.relu, weights_initializer=tf.random_normal_initializer()) hidden2 = fully_connected(hidden1,100,activation_fn=tf.nn.relu, weights_initializer=tf.random_normal_initializer()) outputs = fully_connected(hidden2,10,activation_fn=tf.nn.relu, weights_initializer=tf.random_normal_initializer()) loss = tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=outputs) reduce_mean_loss = tf.reduce_mean(loss) equal_result = tf.equal(tf.argmax(outputs,1),tf.argmax(y,1)) cast_result = tf.cast(equal_result,dtype=tf.float32) accuracy = tf.reduce_mean(cast_result) train_op = tf.train.AdamOptimizer(0.001).minimize(reduce_mean_loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})) for i in range(10000): xs,ys = mnist.train.next_batch(100) sess.run(train_op,feed_dict={x:xs,y:ys}) if i%100==0: print(sess.run(reduce_mean_loss,feed_dict={x:mnist.test.images,y:mnist.test.labels})) print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

CNN图形识别、识别率差,该如何训练模型?

请问大家,训练的图类似第一张图(经裁剪过的,想让模型尽快提取有效信息),而实际待识别的图如第二张图(未经裁剪的),识别率很差,请问如何解决?我应该用怎样的图像去训练模型呐?谢谢!!![图片说明](https://img-ask.csdn.net/upload/201908/28/1566957072_807863.jpg)![图片说明](https://img-ask.csdn.net/upload/201908/28/1566957078_484412.jpg)

手写数字识别mnist测试集上正确率很高自己写的数字识别很差

手写数字识别mnist测试集上正确率很高,自己用画图软件写的数字为什么识别很差

分类卷积神经网络怎么识别视频?思路是什么

我用cnn方式训练了一个十分类网络,分类的是行人的10种不同状态,我现在想用这个网络去进行行人的状态监测,10个分类中有一种是危险的,我希望当视频中有这种状态时,神经网络模型可以分类出来然后发出警报。 我的想法是将视频按照帧数实时截取图片输入训练好的CNN模型,然后实时分类输出结果,但是这种是否可行么?我觉得可行性不大,刚入门也不是很了解,希望有做过这方面的大佬可以解答小弟疑惑,谢谢各位。

kears下关于运用卷积神经识别手写数字程序

![![图片说明](https://img-ask.csdn.net/upload/201712/06/1512551178_561774.png)图片说明](https://img-ask.csdn.net/upload/201712/06/1512551167_423320.png)

CNN卷积神经网络 DeepLearnToolbox问题

我在使用DeepLearnToolbox中遇到了一些问题。第一个问题是:同样的输入训练样本和测试样本,每次的结果不一样,这是不是因为网络中随机选取的卷积核不同导致的?第二个问题:这个问题很奇怪,我把一部分训练样本作为测试样本输入,理论上应该结果应该很明显的指向自己的那一类,但结果并不是指向这些样本的那一类,我在输入训练样本过程中是每一类按照顺序输入的,而不是像Toolbox中给的例子那样各类样本交叉,这个会不会是原因?

TensorFlow训练卷积神经网络中,输入数据必须是什么类型的?

![图片说明](https://img-ask.csdn.net/upload/201806/26/1530015094_303171.jpg)

CNN卷积神经网络中过滤器每个Kernel的层数永远等于上层特征图个数吗?

卷积神经网络的每个特征图理论上受到上层全部特征图的影响,因为filter中每个Kernel的层数(Kernel深度)和上层特征图数量是一致的,为什么图片中第二层卷积层的特征图只连接到了上层中的一部分?有得是全部6个,有得是4个,有的是3个?难道每个Kernel的层数可变? 比如图中第二层卷积的特征图8,它只连接到了上层特征图图1234,没有连接到图56,那这个特征图8是由一个几层Kernel算出来的呢? 图片来源:[CNN 3D可视化](http://scs.ryerson.ca/~aharley/vis/conv/ "") ![图片说明](https://img-ask.csdn.net/upload/201910/01/1569918268_327481.png)

求神经网络算法MATLAB代码

目标是:将表中13个样本,属性为4的数据分为两类,用神经网络算法如何用MATLAB如何做,并计算准确率。目标表格如下: 样本数 分类结果 s1 1 s2 1 s3 1 s4 1 s5 1 s6 0 s7 1 s8 1 s9 0 s10 1 s11 0 s12 1 s13 0 训练样本数据如下: v1 v2 v3 v4 s1 0.7511273 0.776725367 0.8003134 0.820134233 s2 0.714120133 0.742052267 0.7680412 0.790078867 s3 0.645714933 0.6715376 0.695278467 0.715087033 s4 0.7472154 0.778320767 0.807289833 0.832031567 s5 0.675175267 0.6936587 0.710464567 0.724201833 s6 0.6500577 0.6717081 0.6914599 0.707798567 s7 0.593231533 0.61752 0.639873433 0.658526333 s8 0.641064333 0.663005767 0.683036433 0.6995567 s9 0.567699267 0.5920724 0.614508133 0.6331918 s10 0.584882867 0.607799233 0.628835833 0.6462888 s11 0.623362867 0.651357567 0.677329233 0.699399733 s12 0.658756167 0.685911967 0.711035633 0.732209 s13 0.5843791 0.609845067 0.633467167 0.653468933

tensorflow2.0 CNN识别手写数字测试结果出现问题

最近刚接触神经网络,在用MNIST训练集时出现图中情况,训练的时候正常,到测试的时候突然卡住,十几秒后就突然显示很多很多等号,但最下面测试结果是正确的,用的tensorflow2.0,求解答 ![图片说明](https://img-ask.csdn.net/upload/202002/11/1581421922_89144.png)![图片说明](https://img-ask.csdn.net/upload/202002/12/1581508212_287627.png)

tensorflow CNN训练mnist数据集后识别自己写的数字效果不好

自己搭建的cnn,用mnist数据集训练的模型,准确率大概在97%,但是用手机拍了几张手写照片,灰度化之后用模型测试发现效果很差。。。0给认成了8,不知道为什么,有没有遇到类似问题的朋友 模型参考的tensorflow 1.0 学习:用CNN进行图像分类 - denny402 - 博客园 https://www.cnblogs.com/denny402/p/6931338.html

神经网络训练和测试用的图片输入大小不一?

最近研究立体匹配,看了很多论文,发现很多输入图片都进行了随机的crop裁剪, 把图片裁剪为256x512后再进行训练。 这样可以增加数据集和减少训练时间。 但是测试的时候或者验证的时候就用原图片大小,或者一个新的图片大小。 请问这样不会再全连接层的时候因为参数数量不一样而出问题吗? 求大神解答一下,下面贴一下我看到的代码 ``` if self.training: w, h = left_img.size th, tw = 256, 512 x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) left_img = left_img.crop((x1, y1, x1 + tw, y1 + th)) right_img = right_img.crop((x1, y1, x1 + tw, y1 + th)) dataL = np.array(dataL, dtype=np.float32) / 256 dataL = dataL[y1:y1 + th, x1:x1 + tw] processed = preprocess.get_transform(augment=False) left_img = processed(left_img) right_img = processed(right_img) return left_img, right_img, dataL else: w, h = left_img.size left_img = left_img.crop((w - 1232, h - 368, w, h)) right_img = right_img.crop((w - 1232, h - 368, w, h)) w1, h1 = left_img.size dataL = dataL.crop((w - 1232, h - 368, w, h)) dataL = np.ascontiguousarray(dataL, dtype=np.float32) / 256 processed = preprocess.get_transform(augment=False) left_img = processed(left_img) right_img = processed(right_img) return left_img, right_img, dataL ``` 这里的preprocess是进行归一化和标准化 ``` transforms.ToTensor(), transforms.Normalize(**normalize), ```

tensorflow cnn网络怎么以矩阵为输入形式呢?

刚开始学的时候用的mnist数据集其实每张图片就是28x28的二维矩阵,但是因为mnist的加载方式属实太特殊了如下代码: #数据集 data_dir = 'MNIST_data' mnist = read_data_sets(data_dir) train_xdata = np.array([np.reshape(x,[28,28]) for x in mnist.train.images] ) test_xdata = np.array([np.reshape(x,[28,28]) for x in mnist.test.images] ) train_labels = mnist.train.labels test_labels = mnist.test.labels 直接就能读出需要的格式,我如果想从本地读自己的矩阵txt,前两句应该怎么改? 有没有大佬能详细写写的,谢谢!!!!

MySQL 8.0.19安装教程(windows 64位)

话不多说直接开干 目录 1-先去官网下载点击的MySQL的下载​ 2-配置初始化的my.ini文件的文件 3-初始化MySQL 4-安装MySQL服务 + 启动MySQL 服务 5-连接MySQL + 修改密码 先去官网下载点击的MySQL的下载 下载完成后解压 解压完是这个样子 配置初始化的my.ini文件的文件 ...

Python+OpenCV计算机视觉

Python+OpenCV计算机视觉系统全面的介绍。

Vue.js 2.0之全家桶系列视频课程

基于新的Vue.js 2.3版本, 目前新全的Vue.js教学视频,让你少走弯路,直达技术前沿! 1. 包含Vue.js全家桶(vue.js、vue-router、axios、vuex、vue-cli、webpack、ElementUI等) 2. 采用笔记+代码案例的形式讲解,通俗易懂

navicat(内含激活码)

navicat支持mysql的可视化操作,内涵激活码,不用再忍受弹框的痛苦。

HTML期末大作业

这是我自己做的HTML期末大作业,花了很多时间,稍加修改就可以作为自己的作业了,而且也可以作为学习参考

150讲轻松搞定Python网络爬虫

【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

三个项目玩转深度学习(附1G源码)

从事大数据与人工智能开发与实践约十年,钱老师亲自见证了大数据行业的发展与人工智能的从冷到热。事实证明,计算机技术的发展,算力突破,海量数据,机器人技术等,开启了第四次工业革命的序章。深度学习图像分类一直是人工智能的经典任务,是智慧零售、安防、无人驾驶等机器视觉应用领域的核心技术之一,掌握图像分类技术是机器视觉学习的重中之重。针对现有线上学习的特点与实际需求,我们开发了人工智能案例实战系列课程。打造:以项目案例实践为驱动的课程学习方式,覆盖了智能零售,智慧交通等常见领域,通过基础学习、项目案例实践、社群答疑,三维立体的方式,打造最好的学习效果。

基于STM32的电子时钟设计

时钟功能 还有闹钟功能,温湿度功能,整点报时功能 你值得拥有

学生成绩管理系统(PHP + MYSQL)

做的是数据库课程设计,使用的php + MySQL,本来是黄金搭配也就没啥说的,推荐使用wamp服务器,里面有详细的使用说明,带有界面的啊!呵呵 不行的话,可以给我留言!

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

程序员的兼职技能课

获取讲师答疑方式: 在付费视频第一节(触摸命令_ALL)片头有二维码及加群流程介绍 限时福利 原价99元,今日仅需39元!购课添加小助手(微信号:itxy41)按提示还可领取价值800元的编程大礼包! 讲师介绍: 苏奕嘉 前阿里UC项目工程师 脚本开发平台官方认证满级(六级)开发者。 我将如何教会你通过【定制脚本】赚到你人生的第一桶金? 零基础程序定制脚本开发课程,是完全针对零脚本开发经验的小白而设计,课程内容共分为3大阶段: ①前期将带你掌握Q开发语言和界面交互开发能力; ②中期通过实战来制作有具体需求的定制脚本; ③后期将解锁脚本的更高阶玩法,打通任督二脉; ④应用定制脚本合法赚取额外收入的完整经验分享,带你通过程序定制脚本开发这项副业,赚取到你的第一桶金!

实用主义学Python(小白也容易上手的Python实用案例)

原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会  【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例

Java8零基础入门视频教程

这门课程基于主流的java8平台,由浅入深的详细讲解了java SE的开发技术,可以使java方向的入门学员,快速扎实的掌握java开发技术!

Python数据挖掘简易入门

        本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。

零基础学C#编程—C#从小白到大咖

本课程从初学者角度出发,提供了C#从入门到成为程序开发高手所需要掌握的各方面知识和技术。 【课程特点】 1 由浅入深,编排合理; 2 视频讲解,精彩详尽; 3 丰富实例,轻松易学; 4 每章总结配有难点解析文档。 15大章节,228课时,1756分钟与你一同进步!

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

多功能数字钟.zip

利用数字电子计数知识设计并制作的数字电子钟(含multisim仿真),该数字钟具有显示星期、24小时制时间、闹铃、整点报时、时间校准功能

极简JAVA学习营第四期(报名以后加助教微信:eduxy-1)

想学好JAVA必须要报两万的培训班吗? Java大神勿入 如果你: 零基础想学JAVA却不知道从何入手 看了一堆书和视频却还是连JAVA的环境都搭建不起来 囊中羞涩面对两万起的JAVA培训班不忍直视 在职没有每天大块的时间专门学习JAVA 那么恭喜你找到组织了,在这里有: 1. 一群志同道合立志学好JAVA的同学一起学习讨论JAVA 2. 灵活机动的学习时间完成特定学习任务+每日编程实战练习 3. 热心助人的助教和讲师及时帮你解决问题,不按时完成作业小心助教老师的家访哦 上一张图看看前辈的感悟:     大家一定迫不及待想知道什么是极简JAVA学习营了吧,下面就来给大家说道说道: 什么是极简JAVA学习营? 1. 针对Java小白或者初级Java学习者; 2. 利用9天时间,每天1个小时时间; 3.通过 每日作业 / 组队PK / 助教答疑 / 实战编程 / 项目答辩 / 社群讨论 / 趣味知识抢答等方式让学员爱上学习编程 , 最终实现能独立开发一个基于控制台的‘库存管理系统’ 的学习模式 极简JAVA学习营是怎么学习的?   如何报名? 只要购买了极简JAVA一:JAVA入门就算报名成功!  本期为第四期极简JAVA学习营,我们来看看往期学员的学习状态: 作业看这里~   助教的作业报告是不是很专业 不交作业打屁屁 助教答疑是不是很用心   有奖抢答大家玩的很嗨啊     项目答辩终于开始啦   优秀者的获奖感言   这是答辩项目的效果     这么细致的服务,这么好的氛围,这样的学习效果,需要多少钱呢? 不要1999,不要199,不要99,只要9.9 是的你没听错,只要9.9以上所有就都属于你了 如果你: 1、 想学JAVA没有基础 2、 想学JAVA没有整块的时间 3、 想学JAVA没有足够的预算 还等什么?赶紧报名吧,抓紧抢位,本期只招300人,错过只有等时间待定的下一期了   报名请加小助手微信:eduxy-1    

Python可以这样学(第一季:Python内功修炼)

董付国系列教材《Python程序设计基础》、《Python程序设计(第2版)》、《Python可以这样学》配套视频,讲解Python 3.5.x和3.6.x语法、内置对象用法、选择与循环以及函数设计与使用、lambda表达式用法、字符串与正则表达式应用、面向对象编程、文本文件与二进制文件操作、目录操作与系统运维、异常处理结构。

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

机器学习实战系列套餐(必备基础+经典算法+案例实战)

机器学习实战系列套餐以实战为出发点,帮助同学们快速掌握机器学习领域必备经典算法原理并结合Python工具包进行实战应用。建议学习顺序:1.Python必备工具包:掌握实战工具 2.机器学习算法与实战应用:数学原理与应用方法都是必备技能 3.数据挖掘实战:通过真实数据集进行项目实战。按照下列课程顺序学习即可! 课程风格通俗易懂,用最接地气的方式带领大家轻松进军机器学习!提供所有课程代码,PPT与实战数据,有任何问题欢迎随时与我讨论。

Java面试题大全(2020版)

发现网上很多Java面试题都没有答案,所以花了很长时间搜集整理出来了这套Java面试题大全,希望对大家有帮助哈~ 本套Java面试题大全,全的不能再全,哈哈~ 一、Java 基础 1. JDK 和 JRE 有什么区别? JDK:Java Development Kit 的简称,java 开发工具包,提供了 java 的开发环境和运行环境。 JRE:Java Runtime Environ...

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

深度学习原理+项目实战+算法详解+主流框架(套餐)

深度学习系列课程从深度学习基础知识点开始讲解一步步进入神经网络的世界再到卷积和递归神经网络,详解各大经典网络架构。实战部分选择当下最火爆深度学习框架PyTorch与Tensorflow/Keras,全程实战演示框架核心使用与建模方法。项目实战部分选择计算机视觉与自然语言处理领域经典项目,从零开始详解算法原理,debug模式逐行代码解读。适合准备就业和转行的同学们加入学习! 建议按照下列课程顺序来进行学习 (1)掌握深度学习必备经典网络架构 (2)深度框架实战方法 (3)计算机视觉与自然语言处理项目实战。(按照课程排列顺序即可)

HoloLens2开发入门教程

本课程为HoloLens2开发入门教程,讲解部署开发环境,安装VS2019,Unity版本,Windows SDK,创建Unity项目,讲解如何使用MRTK,编辑器模拟手势交互,打包VS工程并编译部署应用到HoloLens上等。

几率大的Redis面试题(含答案)

本文的面试题如下: Redis 持久化机制 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题 热点数据和冷数据是什么 Memcache与Redis的区别都有哪些? 单线程的redis为什么这么快 redis的数据类型,以及每种数据类型的使用场景,Redis 内部结构 redis的过期策略以及内存淘汰机制【~】 Redis 为什么是单线程的,优点 如何解决redis的并发竞争key问题 Red...

MFC一站式终极全套课程包

该套餐共包含从C小白到C++到MFC的全部课程,整套学下来绝对成为一名C++大牛!!!

【数据结构与算法综合实验】欢乐连连看(C++ & MFC)案例

这是武汉理工大学计算机学院数据结构与算法综合实验课程的第三次项目:欢乐连连看(C++ & MFC)迭代开发代码。运行环境:VS2017。已经实现功能:开始游戏、消子、判断胜负、提示、重排、计时、帮助。

YOLOv3目标检测实战:训练自己的数据集

YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。本课程将手把手地教大家使用labelImg标注和使用YOLOv3训练自己的数据集。课程分为三个小项目:足球目标检测(单目标检测)、梅西目标检测(单目标检测)、足球和梅西同时目标检测(两目标检测)。 本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。包括:安装Darknet、给自己的数据集打标签、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入探究。 除本课程《YOLOv3目标检测实战:训练自己的数据集》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:交通标志识别》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 敬请关注并选择学习!

u-boot-2015.07.tar.bz2

uboot-2015-07最新代码,喜欢的朋友请拿去

php+mysql学生成绩管理系统

学生成绩管理系统,分三个模块:学生,教师和管理员。 管理员模块:负责学生、老师信息的增删改;发布课程信息的增删改,以便让学生选课;审核老师提交的学生成绩并且打印成绩存档;按照课号查询每个课号的学生成绩

相关热词 c#框体中的退出函数 c# 按钮透明背景 c# idl 混编出错 c#在位置0处没有任何行 c# 循环给数组插入数据 c# 多线程死锁的例子 c# 钉钉读取员工排班 c# label 不显示 c#裁剪影像 c#工作进程更新ui
立即提问