keras input shape怎么写

大家好!
我在尝试使用Keras下面的LSTM做深度学习,我的数据是这样的:X-Train:30000个数据,每个数据6个数值,所以我的X_train是(30000*6)
根据keras的说明文档,input shape应该是(samples,timesteps,input_dim)
所以我觉得我的input shape应该是:input_shape=(30000,1,6),但是运行后报错:
Input 0 is incompatible with layer lstm_6: expected ndim=3, found ndim=4

我觉得是input shape错了,改成(1,6)错误又变成了:
ValueError: Error when checking input: expected lstm_7_input to have 3 dimensions, but got array with shape (30000, 6)
改成(30000,6)错误提示一样
我该怎么设置input shape呢,多谢!

2个回答

老哥,首先你需要理解为什么input_shape是三维的,以及每一个维度是什么含义。

个人粗浅理解input_shape是为了适应时间序列预测:输入m个序列,输出1个序列,所以才是三维。

input_shape的三个维度samples, time_steps, features

features: 是一个原始样本的特征维数, 对你的样本 6
time_steps: 是输入时间序列的长度,即用多少个连续样本预测一个输出。如果你希望用连续m个序列(每个序列即是一个原始样本),那么就应该设为m。
当然,特殊情况是m=1
samples:经过格式化后的样本数。假设原始样本(3000*6), 你选择features=6, time_steps=m,则samples=3000/m

无论你如何设置time_steps需要注意,原始样本集合是二维向量, 但网络的输入的样本集必须是三维张量(单个样本是二维向量)

一个例子
原始样本集 (3000, 6):
[[1,1,1,1,1,1] * 3000]
处理后(3000, 1, 6)
[
[[1,1,1,1,1,1]] * 3000
]

https://blog.csdn.net/x_ym/article/details/77728732

expected lstm_7_input to have 3 dimensions,要求的数据是三维的啊, (30000, 6),这是二维,你要对其中某一维再reshape

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
关于keras中input_shape参数设定

在input shape中有三个参数,smaples/timesteps/dim,假设我现在有3000个数据,每个数据6个feature,然后我设置5个batch,那batchsize = 3000/5 = 600,接下来设置input参数,samples = 20,dim = 6 (因为有6个feature),timesteps = 30 (samples x tiemsteps = batchsize) 这样理解是否正确?谢谢

keras模型输出层希望输出的shape是(None,1)但我写的模型输出一个三维的shape(None,10,1)

![图片说明](https://img-ask.csdn.net/upload/201902/15/1550245551_523600.jpg) ![图片说明](https://img-ask.csdn.net/upload/201902/15/1550245621_599620.png) ``` ### model taxi_id = Input(shape=(10, 1)) mask_1 = Masking(mask_value=0)(taxi_id) embedding_1 = Embedding(15000, 14, mask_zero=True)(mask_1) time_id = Input(shape=(10, 1)) mask_2 = Masking(mask_value=0)(time_id) embedding_2 = Embedding(7, 4, mask_zero=True)(mask_2) busy = Input(shape=(10, 1)) mask_3 = Masking(mask_value=0)(busy) embedding_3 = Embedding(2, 2, mask_zero=True)(mask_3) concatenate_1 = Concatenate(axis=3)([embedding_1,embedding_2,embedding_3]) concatenate_1 = Lambda(dim_squeeze)(concatenate_1) num_input = Input(shape=(10, 3)) mask_4 = Masking(mask_value=0, input_shape=())(num_input) concatenate_2 = Concatenate(axis=2)([concatenate_1, mask_4]) blstm_1 = Bidirectional(LSTM(64, activation='tanh', return_sequences=True, dropout=0.2, recurrent_dropout=0.2))(concatenate_2) blstm_2 = Bidirectional(LSTM(128, activation='tanh', return_sequences=True, dropout=0.2, recurrent_dropout=0.2))(blstm_1) blstm_3 = Bidirectional(LSTM(64, activation='tanh', return_sequences=True, dropout=0.2, recurrent_dropout=0.2))(blstm_2) dense_1 = Dense(128)(blstm_3) leaky_relu_1 = advanced_activations.LeakyReLU(alpha=0.3)(dense_1) dense_2 = Dense(128)(leaky_relu_1) leaky_relu_2 = advanced_activations.LeakyReLU(alpha=0.3)(dense_2) dense_3 = Dense(128)(leaky_relu_2) leaky_relu_3 = advanced_activations.LeakyReLU(alpha=0.3)(dense_3) dense_4 = Dense(128)(leaky_relu_3) leaky_relu_4 = advanced_activations.LeakyReLU(alpha=0.3)(dense_4) add_1 = add([leaky_relu_1, leaky_relu_2, leaky_relu_3, leaky_relu_4]) dense_5 = Dense(1)(add_1) model = Model([taxi_id, time_id, busy, num_input], dense_5) ``` 求教大佬该怎么写能把输出维度降下来

keras中定义的input_shape的维度

![图片说明](https://img-ask.csdn.net/upload/202005/08/1588937095_44419.jpg) 这是keras识别mnist代码片段,定义输入维度是一维张量,后面喂入数据为啥是成了2维张量?

keras model.fit函数报错,输入参数shape维度不正确,如何修正

使用函数 ``` model.fit(x=images, y=labels, validation_split=0.1, batch_size=batch_size, epochs=n_epochs, callbacks=callbacks, shuffle=True) ``` 由于我的训练集中image是灰色图片,所以images的shape为(2, 28, 28),导致报错Error when checking input: expected input_1 to have 4 dimensions, but got array with shape (2, 28, 28) ,请问该如何处理

VGG提取特征出现这个问题could not broadcast input array from shape (10,4,4,512) into shape (9,4,4,512)

使用Keras上的VGG16模型提取特征分类图像时,出现could not broadcast input array from shape (10,4,4,512) into shape (9,4,4,512)这个问题,有大佬知道怎么解决吗代码和问题如下: ![图片说明](https://img-ask.csdn.net/upload/202004/14/1586833594_654974.png) ![图片说明](https://img-ask.csdn.net/upload/202004/14/1586833611_540422.png)

keras 提示出错 初学者 不明白为什么

from keras.layers import Input, Dense, merge from keras.models import Model from keras import backend as K a = Input(shape=(2,), name='a') b = Input(shape=(2,), name='b') a_rotated = Dense(2, activation='linear')(a) def cosine(x): axis = len(x[0]._keras_shape)-1 dot = lambda a, b: K.batch_dot(a, b, axes=axis) return dot(x[0], x[1]) / K.sqrt(dot(x[0], x[0]) * dot(x[1], x[1])) cosine_sim = merge([a_rotated, b], mode=cosine, output_shape=lambda x: x[:-1]) model = Model(input=[a, b], output=[cosine_sim]) model.compile(optimizer='sgd', loss='mse') import numpy as np a_data = np.asarray([[0, 1], [1, 0], [0, -1], [-1, 0]]) b_data = np.asarray([[1, 0], [0, -1], [-1, 0], [0, 1]]) targets = np.asarray([1, 1, 1, 1]) model.fit([a_data, b_data], [targets], nb_epoch=1000) print(model.layers[2].W.get_value()) 这段代码有问题

基于Keras的YOLOV3源码实现疑问

``` def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):#获得bx,by,bw,bh,置信度和分类信息 """Convert final layer features to bounding box parameters.""" num_anchors = len(anchors) anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y])#获得grid的总坐标 grid = K.cast(grid, K.dtype(feats))#将grid的数据类型转换为与feats一致 feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # Adjust preditions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))#feats[...,2:4]对feats进行切片,得到feats第2列和第3列的数据(含0)即tw,th box_confidence = K.sigmoid(feats[..., 4:5])#获得to box_class_probs = K.sigmoid(feats[..., 5:]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs ``` ``` def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape): '''Get corrected boxes''' box_yx = box_xy[..., ::-1]#倒叙 box_hw = box_wh[..., ::-1] input_shape = K.cast(input_shape, K.dtype(box_yx))#input_shape是哪个input image_shape = K.cast(image_shape, K.dtype(box_yx)) new_shape = K.round(image_shape * K.min(input_shape/image_shape))#tf.round 将张量中的元素四舍五入成为最接近的整数x = tf.constant([0.9, 2.5, 2.3, 1.5, -4.5]) tf.round(x) # [ 1.0, 2.0, 2.0, 2.0, -4.0 ] #K.min返回张量中的最小值, offset = (input_shape-new_shape)/2./input_shape scale = input_shape/new_shape box_yx = (box_yx - offset) * scale box_hw *= scale box_mins = box_yx - (box_hw / 2.) box_maxes = box_yx + (box_hw / 2.) boxes = K.concatenate([ box_mins[..., 0:1], # y_min box_mins[..., 1:2], # x_min box_maxes[..., 0:1], # y_max box_maxes[..., 1:2] # x_max ]) # Scale boxes back to original image shape. boxes *= K.concatenate([image_shape, image_shape]) return boxes ``` 请问: 1.第一个代码中的features传入的是什么值,我的猜测1:是一个feature_map2:是三个scale的feture_map 2.如果传入的是一个feature_map 语句feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])中的-1所代表的维度是什么,一个feture_map的size不应该是grid_shape[0]*grid_shape[1]*(num_class+5)吗?怎么会reshape成为上面的格式 3.box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) 分母的含义是什么,原论文中 bx = sigma(tx)+cx 好像没有分母出现 4.第二个代码段所实现的功能是什么?是如何实现的?

DenseFeature作为函数式API的第一层时报AttributeError: 'DenseFeatures' object has no attribute 'shape';该怎么解决啊。

我在用TensorFlow2.0搭建一个简单的全连接网络,第一层我设计的是一个DenseFeature,剩下的是三个Dense层,但我运行的时候却提示我AttributeError: 'DenseFeatures' object has no attribute 'shape'; 代码如下: ``` feature_layer = tf.keras.layers.DenseFeatures(one_order_feature_columns) dense1 = tf.keras.layers.Dense(128, activation='relu')(feature_layer) dense2 = tf.keras.layers.Dense(128, activation='relu')(dense1) dense3 = tf.keras.layers.Dense(1, activation='sigmoid')(dense2) model = tf.keras.Model(inputs=[feature_layer], outputs=dense3) # model = tf.keras.Sequential([ # tf.keras.layers.DenseFeatures(one_order_feature_columns), # tf.keras.layers.Dense(128, activation='relu'), # tf.keras.layers.Dense(128, activation='relu'), # tf.keras.layers.Dense(1, activation='sigmoid') # ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(train_ds, epochs=5) ``` 我也尝试直接使用Sequential容器来搭建模型(代码中的注释部分),模型能够跑通。但使用函数式API时却不行。我是在哪出错了吗?

tf.keras 关于 胶囊网络 capsule的问题

``` from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer from tensorflow.keras import activations from tensorflow.keras import utils from tensorflow.keras.models import Model from tensorflow.keras.layers import * from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import TensorBoard import mnist import tensorflow batch_size = 128 num_classes = 10 epochs = 20 """ 压缩函数,我们使用0.5替代hinton论文中的1,如果是1,所有的向量的范数都将被缩小。 如果是0.5,小于0.5的范数将缩小,大于0.5的将被放大 """ def squash(x, axis=-1): s_quared_norm = K.sum(K.square(x), axis, keepdims=True) + K.epsilon() scale = K.sqrt(s_quared_norm) / (0.5 + s_quared_norm) result = scale * x return result # 定义我们自己的softmax函数,而不是K.softmax.因为K.softmax不能指定轴 def softmax(x, axis=-1): ex = K.exp(x - K.max(x, axis=axis, keepdims=True)) result = ex / K.sum(ex, axis=axis, keepdims=True) return result # 定义边缘损失,输入y_true, p_pred,返回分数,传入即可fit时候即可 def margin_loss(y_true, y_pred): lamb, margin = 0.5, 0.1 result = K.sum(y_true * K.square(K.relu(1 - margin -y_pred)) + lamb * (1-y_true) * K.square(K.relu(y_pred - margin)), axis=-1) return result class Capsule(Layer): """编写自己的Keras层需要重写3个方法以及初始化方法 1.build(input_shape):这是你定义权重的地方。 这个方法必须设self.built = True,可以通过调用super([Layer], self).build()完成。 2.call(x):这里是编写层的功能逻辑的地方。 你只需要关注传入call的第一个参数:输入张量,除非你希望你的层支持masking。 3.compute_output_shape(input_shape): 如果你的层更改了输入张量的形状,你应该在这里定义形状变化的逻辑,这让Keras能够自动推断各层的形状。 4.初始化方法,你的神经层需要接受的参数 """ def __init__(self, num_capsule, dim_capsule, routings=3, share_weights=True, activation='squash', **kwargs): super(Capsule, self).__init__(**kwargs) # Capsule继承**kwargs参数 self.num_capsule = num_capsule self.dim_capsule = dim_capsule self.routings = routings self.share_weights = share_weights if activation == 'squash': self.activation = squash else: self.activation = activation.get(activation) # 得到激活函数 # 定义权重 def build(self, input_shape): input_dim_capsule = input_shape[-1] if self.share_weights: # 自定义权重 self.kernel = self.add_weight( name='capsule_kernel', shape=(1, input_dim_capsule, self.num_capsule * self.dim_capsule), initializer='glorot_uniform', trainable=True) else: input_num_capsule = input_shape[-2] self.kernel = self.add_weight( name='capsule_kernel', shape=(input_num_capsule, input_dim_capsule, self.num_capsule * self.dim_capsule), initializer='glorot_uniform', trainable=True) super(Capsule, self).build(input_shape) # 必须继承Layer的build方法 # 层的功能逻辑(核心) def call(self, inputs): if self.share_weights: hat_inputs = K.conv1d(inputs, self.kernel) else: hat_inputs = K.local_conv1d(inputs, self.kernel, [1], [1]) batch_size = K.shape(inputs)[0] input_num_capsule = K.shape(inputs)[1] hat_inputs = K.reshape(hat_inputs, (batch_size, input_num_capsule, self.num_capsule, self.dim_capsule)) hat_inputs = K.permute_dimensions(hat_inputs, (0, 2, 1, 3)) b = K.zeros_like(hat_inputs[:, :, :, 0]) for i in range(self.routings): c = softmax(b, 1) o = self.activation(K.batch_dot(c, hat_inputs, [2, 2])) if K.backend() == 'theano': o = K.sum(o, axis=1) if i < self.routings-1: b += K.batch_dot(o, hat_inputs, [2, 3]) if K.backend() == 'theano': o = K.sum(o, axis=1) return o def compute_output_shape(self, input_shape): # 自动推断shape return (None, self.num_capsule, self.dim_capsule) def MODEL(): input_image = Input(shape=(32, 32, 3)) x = Conv2D(64, (3, 3), activation='relu')(input_image) x = Conv2D(64, (3, 3), activation='relu')(x) x = AveragePooling2D((2, 2))(x) x = Conv2D(128, (3, 3), activation='relu')(x) x = Conv2D(128, (3, 3), activation='relu')(x) """ 现在我们将它转换为(batch_size, input_num_capsule, input_dim_capsule),然后连接一个胶囊神经层。模型的最后输出是10个维度为16的胶囊网络的长度 """ x = Reshape((-1, 128))(x) # (None, 100, 128) 相当于前一层胶囊(None, input_num, input_dim) capsule = Capsule(num_capsule=10, dim_capsule=16, routings=3, share_weights=True)(x) # capsule-(None,10, 16) output = Lambda(lambda z: K.sqrt(K.sum(K.square(z), axis=2)))(capsule) # 最后输出变成了10个概率值 model = Model(inputs=input_image, output=output) return model if __name__ == '__main__': # 加载数据 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) # 加载模型 model = MODEL() model.compile(loss=margin_loss, optimizer='adam', metrics=['accuracy']) model.summary() tfck = TensorBoard(log_dir='capsule') # 训练 data_augmentation = True if not data_augmentation: print('Not using data augmentation.') model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), callbacks=[tfck], shuffle=True) else: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by dataset std samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=0, # randomly rotate images in 0 to 180 degrees width_shift_range=0.1, # randomly shift images horizontally height_shift_range=0.1, # randomly shift images vertically horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) # Fit the model on the batches generated by datagen.flow(). model.fit_generator( datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_test, y_test), callbacks=[tfck], workers=4) ``` 以上为代码 运行后出现该问题 ![图片说明](https://img-ask.csdn.net/upload/201902/26/1551184741_476774.png) ![图片说明](https://img-ask.csdn.net/upload/201902/26/1551184734_845838.png) 用官方的胶囊网络keras实现更改为tf下的keras实现仍出现该错误。

请大佬告知keras lstm输出问题

``` ip = Input(shape=(1,10)) op = BatchNormalization()(ip) print(ip.shape) op = LSTM(10, return_sequences=True, dropout=0.1, #input_shape=(1, 193), recurrent_dropout=0.2)(op) print(op.shape) op = Flatten()(op) out = Dense(5,activation='softmax')(op) model = Model(ip,out) model.summary() model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) x = train_x1 kfold = StratifiedKFold(n_splits=10, shuffle=True) x = x.reshape(-1,1,10) cvscores = [] for train, test in kfold.split(x, y): print(x[train].shape,x[test].shape) model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) history = model.fit(x[train], y[train], epochs=300, batch_size=128) scores = model.evaluate(x[test], y[test], verbose=0) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) cvscores.append(scores[1] * 100) ``` Layer (type) Output Shape Param # ================================================================= input_22 (InputLayer) (None, 1, 10) 0 _________________________________________________________________ batch_normalization_9 (Batch (None, 1, 10) 40 _________________________________________________________________ lstm_16 (LSTM) (None, 1, 10) 840 _________________________________________________________________ flatten_5 (Flatten) (None, 10) 0 _________________________________________________________________ dense_23 (Dense) (None, 5) 55 ================================================================= Total params: 935 Trainable params: 915 Non-trainable params: 20 我这是个语音模型,输入数据是几百条语音,每条语音有10个压缩特征。我reshape成(-1,1,10)输入到lstm里面,但是最后想做一个5分类。但是总报错 ValueError: Error when checking target: expected dense_23 to have shape (5,) but got array with shape (1,) 求问大佬这个lstm层输出后应该怎么做?还是我之前的步骤有问题?

机器翻译训练模型时总是报错关于矩阵类型不匹配,求帮助

求帮助…… 小弟最近在做关于机器翻译的毕业设计,选题一时爽做题一直坑,遇到了这样的问题:TypeError: Input ‘b’ of ‘MatMul’ Op has type float32 that does not match type int32 of argument ‘a’ 我是现在github上找了一个使用tensorflow 和 tf.keras的代码学习,先跑一跑感受一下,使用的是tensorflow2.0.0版本,在训练模型时就会遇到这种情况,有没有大佬可以帮忙解答一下如何修改代码。非常感谢! 代码如下: ``` def simple_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): """ Build and train a basic RNN on x and y :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained """ # TODO: Build the model learning_rate = 1e-3 input_seq = Input(input_shape[1:]) rnn = GRU(64, return_sequences=True)(input_seq) logits = TimeDistributed(Dense(french_vocab_size))(rnn) model = Model(input_seq, Activation('softmax')(logits)) model.summary() model.compile(loss=sparse_categorical_crossentropy, optimizer=Adam(learning_rate), metrics=['accuracy']) return model # Reshaping the input to work with a basic RNN tmp_x = pad(preproc_english_sentences, max_french_sequence_length) tmp_x = tmp_x.reshape((-1, preproc_french_sentences.shape[-2], 1)) print(tmp_x.shape) # Train the neural network simple_rnn_model = simple_model( tmp_x.shape, max_french_sequence_length, english_vocab_size, french_vocab_size) simple_rnn_model.fit(tmp_x, preproc_french_sentences, batch_size=1024, epochs=50, validation_split=0.2) # Print prediction(s) print("") print(logits_to_text(simple_rnn_model.predict(tmp_x[:1])[0], french_tokenizer)) ```

Keras做序列到序列任务,出现这样的低级错误该怎么解决?

Keras 处理一个序列到序列问题,输入序列如下: ![图片说明](https://img-ask.csdn.net/upload/201906/12/1560309333_919991.jpg) 输出序列如下: ![图片说明](https://img-ask.csdn.net/upload/201906/12/1560309406_692000.jpg) 它们的shape是(55,60) 即共55句,每句60个word 模型如下: model = Sequential() model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, mask_zero=True,input_shape=(MAX_SEQUENCE_LENGTH,))) # Random embedding model.add(Bidirectional(LSTM(BiRNN_UNITS // 2, return_sequences=True))) model.add(Dense(2,activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['acc']) 模型summary如下: ![图片说明](https://img-ask.csdn.net/upload/201906/12/1560309553_301880.jpg) 出现这样的错误,请问该怎么解决? Error when checking target: expected dense_1 to have 3 dimensions, but got array with shape (45, 60)

keras报错:All inputs to the layer should be tensors.

深度学习小白,初次使用keras构建网络,遇到问题向各位大神请教: ``` from keras.models import Sequential from keras.layers import Embedding from keras.layers import Dense, Activation from keras.layers import Concatenate from keras.layers import Add 构建了一些嵌入层_ model_store = Embedding(1115, 10) model_dow = Embedding(7, 6) model_day = Embedding(31, 10) model_month = Embedding(12, 6) model_year = Embedding(3, 2) model_promotion = Embedding(2, 1) model_state = Embedding(12, 6) 将这些嵌入层连接起来 output_embeddings = [model_store, model_dow, model_day, model_month, model_year, model_promotion, model_state] output_model = Concatenate()(output_embeddings) ``` 运行报错: --------------------------------------------------------------------------- ValueError Traceback (most recent call last) D:\python\lib\site-packages\keras\engine\base_layer.py in assert_input_compatibility(self, inputs) 278 try: --> 279 K.is_keras_tensor(x) 280 except ValueError: D:\python\lib\site-packages\keras\backend\tensorflow_backend.py in is_keras_tensor(x) 473 raise ValueError('Unexpectedly found an instance of type `' + --> 474 str(type(x)) + '`. ' 475 'Expected a symbolic tensor instance.') ValueError: Unexpectedly found an instance of type `<class 'keras.layers.embeddings.Embedding'>`. Expected a symbolic tensor instance. During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) <ipython-input-32-8e957c4150f0> in <module> ----> 1 output_model = Concatenate()(output_embeddings) D:\python\lib\site-packages\keras\engine\base_layer.py in __call__(self, inputs, **kwargs) 412 # Raise exceptions in case the input is not compatible 413 # with the input_spec specified in the layer constructor. --> 414 self.assert_input_compatibility(inputs) 415 416 # Collect input shapes to build layer. D:\python\lib\site-packages\keras\engine\base_layer.py in assert_input_compatibility(self, inputs) 283 'Received type: ' + 284 str(type(x)) + '. Full input: ' + --> 285 str(inputs) + '. All inputs to the layer ' 286 'should be tensors.') 287 ValueError: Layer concatenate_5 was called with an input that isn't a symbolic tensor. Received type: <class 'keras.layers.embeddings.Embedding'>. Full input: [<keras.layers.embeddings.Embedding object at 0x000001C82EA1EC88>, <keras.layers.embeddings.Embedding object at 0x000001C82EA1EB38>, <keras.layers.embeddings.Embedding object at 0x000001C82EA1EB00>, <keras.layers.embeddings.Embedding object at 0x000001C82E954240>, <keras.layers.embeddings.Embedding object at 0x000001C82E954198>, <keras.layers.embeddings.Embedding object at 0x000001C82E9542E8>, <keras.layers.embeddings.Embedding object at 0x000001C82E954160>]. All inputs to the layer should be tensors. 报错提示是:所有层的输入应该为张量,请问应该怎么修改呢?麻烦了!

如何在keras+tensorflow中对4通道图像如何输入并分类呢?

ImageDataGenerator默认的flow_from_directory函数中有个color_mode设置,我看文献中只支持‘gray'和'rgb',但我现在要处理的图像是RGBD的4通道图像,如何设置呢?求大师指点。 我尝试着将color_mode设置为'rgb',但是在第一层卷积层的输入数据类型,设置的是(width,height,4)的四通道格式,运行的时候出错了,提示如果我的color_mode设置成了‘rgb',那么自动生成batch的时候,依旧是会变为3通道格式。具体如下: 在flow_from_directory中的color为‘rgb' ``` train_generator = train_datagen.flow_from_directory( directory= train_dir, # this is the target directory target_size=(200, 200), # all images will be resized to 200x200 classes= potato_class, batch_size=60, color_mode= 'rgb', class_mode='sparse') ``` 在卷基层的输入input_shape中设置为4通道 ``` model = Sequential() # CNN构建 model.add(Convolution2D( input_shape=(200, 200, 4), # input_shape=(1, Width, Height), filters=16, kernel_size=3, strides=1, padding='same', data_format='channels_last', name='CONV_1' )) ``` 运行后的错误提示如下: ValueError: Error when checking input: expected CONV_1_input to have shape (None, 200, 200, 4) but got array with shape (60, 200, 200, 3) 怎样才能让keras接受4通道图像呢?我在stackOverflow中看到有人留言说4通道是支持的,但是我没有找到代码。

python keras sequential输入

python keras sequential 以Convolution1D作为第一层,输入的数据应该以怎样的形式? ![图片说明](https://img-ask.csdn.net/upload/201611/13/1479043537_386017.png) ![图片说明](https://img-ask.csdn.net/upload/201611/13/1479043555_758273.png) 刚开始接触,求老师能指点一下。

关于Colab上Keras模型转TPU模型的问题

使用TPU加速训练,将Keras模型转TPU模型时报错,如图![图片说明](https://img-ask.csdn.net/upload/202001/14/1578998736_238721.png) 关键代码如下 引用库: ``` %tensorflow_version 1.x import json import os import numpy as np import tensorflow as tf from tensorflow.python.keras.applications import resnet from tensorflow.python.keras import callbacks from tensorflow.python.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt ``` 转换TPU模型代码如下 ``` # This address identifies the TPU we'll use when configuring TensorFlow. TPU_WORKER = 'grpc://' + os.environ['COLAB_TPU_ADDR'] tf.logging.set_verbosity(tf.logging.INFO) self.model = tf.contrib.tpu.keras_to_tpu_model(self.model, strategy=tf.contrib.tpu.TPUDistributionStrategy(tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER))) self.model = resnet50.ResNet50(weights=None, input_shape=dataset.input_shape, classes=num_classes) ```

TensorFlow的Keras如何使用Dataset作为数据输入?

当我把dataset作为输入数据是总会报出如下错误,尽管我已经在数据解析那里reshape了图片大小为(512,512,1),请问该如何修改? ``` ValueError: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (None, 1) ``` **图片大小定义** ``` import tensorflow as tf from tensorflow import keras IMG_HEIGHT = 512 IMG_WIDTH = 512 IMG_CHANNELS = 1 IMG_PIXELS = IMG_CHANNELS * IMG_HEIGHT * IMG_WIDTH ``` **解析函数** ``` def parser(record): features = tf.parse_single_example(record, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([23], tf.int64) }) image = tf.decode_raw(features['image_raw'], tf.uint8) label = tf.cast(features['label'], tf.int32) image.set_shape([IMG_PIXELS]) image = tf.reshape(image, [IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]) image = tf.cast(image, tf.float32) return image, label ``` **模型构建** ``` dataset = tf.data.TFRecordDataset([TFRECORD_PATH]) dataset.map(parser) dataset = dataset.repeat(10*10).batch(10) model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(5, 5), padding='same', activation='relu', input_shape=(512, 512, 1)), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Flatten(), keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.25), keras.layers.Dense(23, activation='softmax') ]) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.sparse_categorical_crossentropy, metrics=[tf.keras.metrics.categorical_accuracy]) model.fit(dataset.make_one_shot_iterator(), epochs=10, steps_per_epoch=10) ```

keras.util.sequence + fit_generator 如何实现多输出model

输入输出的形式是下面这样: ``` model = Model(inputs=input_img, outputs=[mask,net2_opt,net3_opt]) ``` 由于sequence要求一定要返回一个两个参数的远足,所以生成器的_getitem_的实现如下: ``` class DataGenerator(keras.utils.Sequence): def __getitem__(self, index): #生成每个batch数据,这里就根据自己对数据的读取方式进行发挥了 # 生成batch_size个索引 batch_indexs = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # 根据索引获取datas集合中的数据 batch_datas = [self.datas[k] for k in batch_indexs] # 生成数据 images, masks,heatmaps,xyzs = self.data_generation(batch_datas) return (images, [masks,heatmaps,xyzs]) ``` output中的mask并不能与getitem的返回值匹配。 会报错: ValueError: Error when checking target: expected conv_1x1_x14 to have 4 dimensions, but got array with shape (3,1) 请问,是不是keras.util.sequence不能实现多输出问题?

InvalidArgumentError: Input to reshape is a tensor with 152000 values, but the requested shape requires a multiple of 576

运行无提示,也没有输出数据,求大神帮助! # -*- coding: utf-8 -*- """ Created on Fri Oct 4 10:01:03 2019 @author: xxj """ import numpy as np from sklearn import preprocessing import tensorflow as tf from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd #读取CSV文件数据 # 从CSV文件中读取数据,返回DataFrame类型的数据集合。 def zc_func_read_csv(): zc_var_dataframe = pd.read_csv("highway.csv", sep=",") # 打乱数据集合的顺序。有时候数据文件有可能是根据某种顺序排列的,会影响到我们对数据的处理。 zc_var_dataframe = zc_var_dataframe.reindex(np.random.permutation(zc_var_dataframe.index)) return zc_var_dataframe # 预处理特征值 def preprocess_features(highway): processed_features = highway[ ["line1","line2","line3","line4","line5", "brige1","brige2","brige3","brige4","brige5", "tunnel1","tunnel2","tunnel3","tunnel4","tunnel5", "inter1","inter2","inter3","inter4","inter5", "econmic1","econmic2","econmic3","econmic4","econmic5"] ] return processed_features # 预处理标签 highway=zc_func_read_csv() x= preprocess_features(highway) outtarget=np.array(pd.read_csv("highway1.csv")) y=np.array(outtarget[:,[0]]) print('##################################################################') # 随机挑选 train_x_disorder, test_x_disorder, train_y_disorder, test_y_disorder = train_test_split(x, y,train_size=0.8, random_state=33) #数据标准化 ss_x = preprocessing.StandardScaler() train_x_disorder = ss_x.fit_transform(train_x_disorder) test_x_disorder = ss_x.transform(test_x_disorder) ss_y = preprocessing.StandardScaler() train_y_disorder = ss_y.fit_transform(train_y_disorder.reshape(-1, 1)) test_y_disorder=ss_y.transform(test_y_disorder.reshape(-1, 1)) #变厚矩阵 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) #偏置 def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #卷积处理 变厚过程 def conv2d(x, W): # stride [1, x_movement, y_movement, 1] x_movement、y_movement就是步长 # Must have strides[0] = strides[3] = 1 padding='SAME'表示卷积后长宽不变 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #pool 长宽缩小一倍 def max_pool_2x2(x): # stride [1, x_movement, y_movement, 1] return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 25]) #原始数据的维度:25 ys = tf.placeholder(tf.float32, [None, 1])#输出数据为维度:1 keep_prob = tf.placeholder(tf.float32)#dropout的比例 x_image = tf.reshape(xs, [-1, 5, 5, 1])#原始数据25变成二维图片5*5 ## conv1 layer ##第一卷积层 W_conv1 = weight_variable([2,2, 1,32]) # patch 2x2, in size 1, out size 32,每个像素变成32个像素,就是变厚的过程 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 2x2x32,长宽不变,高度为32的三维图像 #h_pool1 = max_pool_2x2(h_conv1) # output size 2x2x32 长宽缩小一倍 ## conv2 layer ##第二卷积层 W_conv2 = weight_variable([2,2, 32, 64]) # patch 2x2, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2) #输入第一层的处理结果 输出shape 4*4*64 ## fc1 layer ## full connection 全连接层 W_fc1 = weight_variable([3*3*64, 512])#4x4 ,高度为64的三维图片,然后把它拉成512长的一维数组 b_fc1 = bias_variable([512]) h_pool2_flat = tf.reshape(h_conv2, [-1, 3*3*64])#把3*3,高度为64的三维图片拉成一维数组 降维处理 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)#把数组中扔掉比例为keep_prob的元素 ## fc2 layer ## full connection W_fc2 = weight_variable([512, 1])#512长的一维数组压缩为长度为1的数组 b_fc2 = bias_variable([1])#偏置 #最后的计算结果 prediction = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 #prediction = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # 计算 predition与y 差距 所用方法很简单就是用 suare()平方,sum()求和,mean()平均值 cross_entropy = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) # 0.01学习效率,minimize(loss)减小loss误差 train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy) sess = tf.Session() # important step # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 sess.run(tf.global_variables_initializer()) #训练500次 for i in range(100): sess.run(train_step, feed_dict={xs: train_x_disorder, ys: train_y_disorder, keep_prob: 0.7}) print(i,'误差=',sess.run(cross_entropy, feed_dict={xs: train_x_disorder, ys: train_y_disorder, keep_prob: 1.0})) # 输出loss值 # 可视化 prediction_value = sess.run(prediction, feed_dict={xs: test_x_disorder, ys: test_y_disorder, keep_prob: 1.0}) ###画图########################################################################### fig = plt.figure(figsize=(20, 3)) # dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 axes = fig.add_subplot(1, 1, 1) line1,=axes.plot(range(len(prediction_value)), prediction_value, 'b--',label='cnn',linewidth=2) #line2,=axes.plot(range(len(gbr_pridict)), gbr_pridict, 'r--',label='优选参数') line3,=axes.plot(range(len(test_y_disorder)), test_y_disorder, 'g',label='实际') axes.grid() fig.tight_layout() #plt.legend(handles=[line1, line2,line3]) plt.legend(handles=[line1, line3]) plt.title('卷积神经网络') plt.show()

大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

我以为我学懂了数据结构,直到看了这个导图才发现,我错了

数据结构与算法思维导图

String s = new String(" a ") 到底产生几个对象?

老生常谈的一个梗,到2020了还在争论,你们一天天的,哎哎哎,我不是针对你一个,我是说在座的各位都是人才! 上图红色的这3个箭头,对于通过new产生一个字符串(”宜春”)时,会先去常量池中查找是否已经有了”宜春”对象,如果没有则在常量池中创建一个此字符串对象,然后堆中再创建一个常量池中此”宜春”对象的拷贝对象。 也就是说准确答案是产生了一个或两个对象,如果常量池中原来没有 ”宜春” ,就是两个。...

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

Linux面试题(2020最新版)

文章目录Linux 概述什么是LinuxUnix和Linux有什么区别?什么是 Linux 内核?Linux的基本组件是什么?Linux 的体系结构BASH和DOS之间的基本区别是什么?Linux 开机启动过程?Linux系统缺省的运行级别?Linux 使用的进程间通信方式?Linux 有哪些系统日志文件?Linux系统安装多个桌面环境有帮助吗?什么是交换空间?什么是root帐户什么是LILO?什...

Linux命令学习神器!命令看不懂直接给你解释!

大家都知道,Linux 系统有非常多的命令,而且每个命令又有非常多的用法,想要全部记住所有命令的所有用法,恐怕是一件不可能完成的任务。 一般情况下,我们学习一个命令时,要么直接百度去搜索它的用法,要么就直接用 man 命令去查看守冗长的帮助手册。这两个都可以实现我们的目标,但有没有更简便的方式呢? 答案是必须有的!今天给大家推荐一款有趣而实用学习神器 — kmdr,让你解锁 Linux 学习新姿势...

和黑客斗争的 6 天!

互联网公司工作,很难避免不和黑客们打交道,我呆过的两家互联网公司,几乎每月每天每分钟都有黑客在公司网站上扫描。有的是寻找 Sql 注入的缺口,有的是寻找线上服务器可能存在的漏洞,大部分都...

史上最全的 python 基础知识汇总篇,没有比这再全面的了,建议收藏

网友们有福了,小编终于把基础篇的内容全部涉略了一遍,这是一篇关于基础知识的汇总的文章,请朋友们收下,不用客气,不过文章篇幅肯能会有点长,耐心阅读吧爬虫(七十)多进程multiproces...

讲一个程序员如何副业月赚三万的真实故事

loonggg读完需要3分钟速读仅需 1 分钟大家好,我是你们的校长。我之前讲过,这年头,只要肯动脑,肯行动,程序员凭借自己的技术,赚钱的方式还是有很多种的。仅仅靠在公司出卖自己的劳动时...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

85后蒋凡:28岁实现财务自由、34岁成为阿里万亿电商帝国双掌门,他的人生底层逻辑是什么?...

蒋凡是何许人也? 2017年12月27日,在入职4年时间里,蒋凡开挂般坐上了淘宝总裁位置。 为此,时任阿里CEO张勇在任命书中力赞: 蒋凡加入阿里,始终保持创业者的冲劲,有敏锐的...

总结了 150 余个神奇网站,你不来瞅瞅吗?

原博客再更新,可能就没了,之后将持续更新本篇博客。

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

新一代神器STM32CubeMonitor介绍、下载、安装和使用教程

关注、星标公众号,不错过精彩内容作者:黄工公众号:strongerHuang最近ST官网悄悄新上线了一款比较强大的工具:STM32CubeMonitor V1.0.0。经过我研究和使用之...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

大学一路走来,学习互联网全靠这几个网站,最终拿下了一把offer

大佬原来都是这样炼成的

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

什么时候跳槽,为什么离职,你想好了么?

都是出来打工的,多为自己着想

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

你期望月薪4万,出门右拐,不送,这几个点,你也就是个初级的水平

先来看几个问题通过注解的方式注入依赖对象,介绍一下你知道的几种方式@Autowired和@Resource有何区别说一下@Autowired查找候选者的...

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

大三实习生,字节跳动面经分享,已拿Offer

说实话,自己的算法,我一个不会,太难了吧

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

立即提问
相关内容推荐