ChrisWen2020 2021-07-15 17:34 采纳率: 33.3%
浏览 1284
已采纳

YOLOv5 训练数据集的时候报错

我希望用YOLOv5训练自己的数据集,我的数据集是游泳池中的人,我希望识别出他们的头部

YOLOv5 train.py运行后结果如下:

Using CPU

Namespace(adam=False, batch_size=16, bucket='', cache_images=False, cfg='models/yolov5s.yaml', data='data/swimmer.yaml', device='', epochs=300, evolve=False, exist_ok=False, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', rect=False, resume=False, single_cls=False, sync_bn=False, total_batch_size=16, weights='yolov5s.pt', workers=4, world_size=1)
Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
Hyperparameters {'lr0': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'giou': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mixup': 0.0, 'lrf': 0.2, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'mosaic': 1.0}

             from  n    params  module                                  arguments                     

0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 19904 models.common.BottleneckCSP [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 1 161152 models.common.BottleneckCSP [128, 128, 3]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 1 641792 models.common.BottleneckCSP [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 378624 models.common.BottleneckCSP [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 95104 models.common.BottleneckCSP [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 313088 models.common.BottleneckCSP [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
24 [17, 20, 23] 1 16182 models.yolo.Detect [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
D:\Python3.8.5\lib\site-packages\torch\nn\functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at ..\c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Model Summary: 191 layers, 7.25509e+06 parameters, 7.25509e+06 gradients

Optimizer groups: 62 .bias, 70 conv.weight, 59 other
Transferred 362/370 items from yolov5s.pt
Scanning images: 100%|██████████| 1/1 [00:00<00:00, 40.11it/s]
Scanning labels D:\Python3.8.5\YOLO\yolov5\data\labels.cache (1 found, 0 missing, 0 empty, 0 duplicate, for 1 images): 100%|██████████| 1/1 [00:00<00:00, 501.35it/s]
Scanning images: 100%|██████████| 26/26 [00:00<00:00, 75.35it/s]
Scanning labels D:\Python3.8.5\YOLO\yolov5\data\labels.cache (26 found, 0 missing, 0 empty, 0 duplicate, for 26 images): 100%|██████████| 26/26 [00:00<00:00, 8690.78it/s]

Analyzing anchors... Best Possible Recall (BPR) = 1.0000
Image sizes 640 train, 640 test
Using 0 dataloader workers
Starting training for 300 epochs...

 Epoch   gpu_mem      GIoU       obj       cls     total   targets  img_size

0%| | 0/1 [00:01<?, ?it/s]

Traceback (most recent call last):
File "D:/Python3.8.5/YOLO/yolov5/train.py", line 496, in
train(hyp, opt, device, tb_writer)
File "D:/Python3.8.5/YOLO/yolov5/train.py", line 286, in train
loss, loss_items = compute_loss(pred, targets.to(device), model) # scaled by batch_size
File "D:\Python3.8.5\YOLO\yolov5\utils\utils.py", line 480, in compute_loss
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
RuntimeError: shape mismatch: value tensor of shape [18] cannot be broadcast to indexing result of shape [0]

  • 写回答

2条回答 默认 最新

  • 有问必答小助手 2021-07-16 14:52
    关注

    你好,我是有问必答小助手。为了技术专家团更好地为您解答问题,烦请您补充下(1)问题背景详情,(2)您想解决的具体问题,(3)问题相关代码图片或者报错信息。便于技术专家团更好地理解问题,并给出解决方案。

    您可以点击问题下方的【编辑】,进行补充修改问题。

    img

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

问题事件

  • 已采纳回答 7月17日
  • 修改了问题 7月17日
  • 创建了问题 7月15日

悬赏问题

  • ¥100 微信小程序跑脚本授权的问题
  • ¥60 为什么使用python对地震数据进行umap降维后,数据成图会出现不连续的现象
  • ¥100 房产抖音小程序苹果搜不到安卓可以付费悬赏
  • ¥15 STM32串口接收问题
  • ¥15 腾讯IOA系统怎么在文件夹里修改办公网络的连接
  • ¥15 filenotfounderror:文件是存在的,权限也给了,但还一直报错
  • ¥15 MATLAB和mosek的求解问题
  • ¥20 修改中兴光猫sn的时候提示失败
  • ¥15 java大作业爬取网页
  • ¥15 怎么获取欧易的btc永续合约和交割合约的5m级的历史数据用来回测套利策略?