eheah 2022-05-25 20:36 采纳率: 100%
浏览 2534
已结题

pycharm运行代码出现“在 '__init__.pyi' 中找不到引用”

问题遇到的现象和发生背景

想复现书中的Google Net

问题相关代码,请勿粘贴截图

import tensorflow as tf

slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)

def inception_v3_arg_scope(weight_decay=0.00004,
stddev=0.1,
batch_norm_var_collection='moving_vars '):
batch_norm_params = {
'decay': 0.9997,
'epsilon': 0.001,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope(
[slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc

def inception_v3_base(inputs, scope=None):
end_points = {}
with tf.variable_scope(scope, 'InceptionV3', [inputs]):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='VALID '):
net = slim.conv2d(inputs, 32, [3, 3], stride=2, scope='Conv2d_1a_3x3')
net = slim.conv2d(net, 32, [3, 3], scope='Conv2d_2a_3x3 ')

        net = slim.conv2d(net, 64, [3, 3], padding='SAME',
                          scope='Conv2d_2b_3x3')
        net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_3a_3x3')
        net = slim.conv2d(net, 80, [1, 1], scope='Conv2d_3b_1x1')
        net = slim.conv2d(net, 192, [3, 3], scope='Conv2d_4a_3x3')
        net = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_5a_3x3')

with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                    stride=1, padding='SAME'):
    with tf.variable_scope('Mixed_5b'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
            branch_1 = slim.conv2d(branch_1, 64, [5, 5],
                                   scope='Conv2d_0b_5x5')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            branch_2 = slim.conv2d(branch_2, 96, [3, 3],
                                   scope='Conv2d_0b_3x3')
            branch_2 = slim.conv2d(branch_2, 96, [3, 3],
                                   scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3 '):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 32, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_5c'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1 '):
            branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0b_1x1')
            branch_1 = slim.conv2d(branch_1, 64, [5, 5],
                                   scope='Conv_1_0c_5x5 ')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            branch_2 = slim.conv2d(branch_2, 96, [3, 3],
                                   scope='Conv2d_0b_3x3 ')
            branch_2 = slim.conv2d(branch_2, 96, [3, 3],
                                   scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 64, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_5d'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1 ')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
            branch_1 = slim.conv2d(branch_1, 64, [5, 5],
                                   scope='Conv2d_0b_5x5')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            branch_2 = slim.conv2d(branch_2, 96, [3, 3],
                                   scope='Conv2d_0b_3x3 ')
            branch_2 = slim.conv2d(branch_2, 96, [3.3],
                                   scope='Conv2d_0c_3x3 ')
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 64, [1, 1],
                                   scope='Conv2d_0b_1x1 ')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_6a'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 384, [3, 3], stride=2,
                                   padding='VALID', scope='Conv2d_1a_1x1')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
            branch_1 = slim.conv2d(branch_1, 96, [3, 3],
                                   scope='Conv2d_0b_3x3')
            branch_1 = slim.conv2d(branch_1, 96, [3, 3], stride=2,
                                   padding='VALID', scope='Conv2d_1a_1x1 ')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                       scope='MaxPool_1a_3x3')
        net = tf.concat([branch_0, branch_1, branch_2], 3)

    with tf.variable_scope('Mixed_6b'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1 ')
            branch_1 = slim.conv2d(branch_1, 128, [1, 7],
                                   scope='Conv2d_0b_1x7')
            branch_1 = slim.conv2d(branch_1, 192, [7, 1],
                                   scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1 ')
            branch_2 = slim.conv2d(branch_2, 128, [7, 1],
                                   scope='Conv2d_0b_7x1 ')
            branch_2 = slim.conv2d(branch_2, 128, [1, 7],
                                   scope='Conv2d_oc_1x7')
            branch_2 = slim.conv2d(branch_2, 128, [7, 1],
                                   scope='Conv2d_0d_7x1')
            branch_2 = slim.conv2d(branch_2, 192, [1, 7],
                                   scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 192, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_6c'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 192.[1, 1], scope='Conv2d_0a_1x1 ')
        with tf.variable_scope('Branch_1 '):
            branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1 ')
            branch_1 = slim.conv2d(branch_1, 160, [1, 7],
                                   scope='Conv2d_0b_1x7')
            branch_1 = slim.conv2d(branch_1, 192, [7, 1],
                                   scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
            branch_2 = slim.conv2d(branch_2, 160, [7, 1],
                                   scope='Conv2d_0b_7x1')
            branch_2 = slim.conv2d(branch_2, 160, [1, 7],
                                   scope='Conv2d_0c_1x7')
            branch_2 = slim.conv2d(branch_2, 160, [7, 1],
                                   scope='Conv2d_0d_7x1')
            branch_2 = slim.conv2d(branch_2, 192, [1, 7],
                                   scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 192, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_6d'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 192.[1, 1], scope='Conv2d_0a_1x1 ')
        with tf.variable_scope('Branch_1 '):
            branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1 ')
            branch_1 = slim.conv2d(branch_1, 160, [1, 7],
                                   scope='Conv2d_0b_1x7')
            branch_1 = slim.conv2d(branch_1, 192, [7, 1],
                                   scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
            branch_2 = slim.conv2d(branch_2, 160, [7, 1],
                                   scope='Conv2d_0b_7x1')
            branch_2 = slim.conv2d(branch_2, 160, [1, 7],
                                   scope='Conv2d_0c_1x7')
            branch_2 = slim.conv2d(branch_2, 160, [7, 1],
                                   scope='Conv2d_0d_7x1')
            branch_2 = slim.conv2d(branch_2, 192, [1, 7],
                                   scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 192, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_6e'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 192.[1, 1], scope='Conv2d_0a_1x1 ')
        with tf.variable_scope('Branch_1 '):
            branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1 ')
            branch_1 = slim.conv2d(branch_1, 160, [1, 7],
                                   scope='Conv2d_0b_1x7')
            branch_1 = slim.conv2d(branch_1, 192, [7, 1],
                                   scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
            branch_2 = slim.conv2d(branch_2, 160, [7, 1],
                                   scope='Conv2d_0b_7x1')
            branch_2 = slim.conv2d(branch_2, 160, [1, 7],
                                   scope='Conv2d_0c_1x7')
            branch_2 = slim.conv2d(branch_2, 160, [7, 1],
                                   scope='Conv2d_0d_7x1')
            branch_2 = slim.conv2d(branch_2, 192, [1, 7],
                                   scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 192, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    end_points['Mixed_6e'] = net

    with tf.variable_scope('Mixed_7a'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            branch_0 = slim.conv2d(branch_0, 320, [3, 3], stride=2,
                                   padding='VALID', scope='Conv2d_1a_3x3 ')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
            branch_1 = slim.conv2d(branch_1, 192, [1, 7],
                                   scope='Conv2d_0b_1x7')
            branch_1 = slim.conv2d(branch_1, 192, [7, 1],
                                   scope=' Conv2d_ec_7x1')
            branch_1 = slim.conv2d(branch_1, 192, [3, 3], stride=2,
                                   padding='VALID', scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                       scope='MaxPool_1a_3x3')
        net = tf.concat([branch_0, branch_1, branch_2], 3)

    with tf.variable_scope('Mixed_7b'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1 ')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
            branch_1 = tf.concat([
                slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'),
                slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0b_3x1')], 3)
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 448, [1, 1], scope=' Conv2d_0a_1x1 ')
            branch_2 = slim.conv2d(branch_2, 384, [3, 3],
                                   scope='Conv2d_0b_3x3')
            branch_2 = tf.concat([
                slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'),
                slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')], 3)
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 192, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)

    with tf.variable_scope('Mixed_7c'):
        with tf.variable_scope('Branch_0'):
            branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1 ')
        with tf.variable_scope('Branch_1'):
            branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
            branch_1 = tf.concat([
                slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'),
                slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0b_3x1')], 3)
        with tf.variable_scope('Branch_2'):
            branch_2 = slim.conv2d(net, 448, [1, 1], scope=' Conv2d_0a_1x1 ')
            branch_2 = slim.conv2d(branch_2, 384, [3, 3],
                                   scope='Conv2d_0b_3x3')
            branch_2 = tf.concat([
                slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'),
                slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')], 3)
        with tf.variable_scope('Branch_3'):
            branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
            branch_3 = slim.conv2d(branch_3, 192, [1, 1],
                                   scope='Conv2d_0b_1x1')
        net = tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
    return net, end_points

def inception_v3(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.8,
prediction_fn=slim.softmax,
spatial_squeeze=True,
reuse=None,
scope='Inceptionv3'):
with tf.variable_scope(scope, 'InceptionV3', [inputs, num_classes],
reuse=reuse) as scope:
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
net, end_points = inception_v3_base(inputs, scope=scope)

    with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                        stride=1, padding='SAME'):
        aux_logits = end_points['Mixed_6e']
        with tf.variable_scope('AuXLogits'):
            aux_logits = slim.avg_pool2d(
                aux_logits, [5, 5], stride=3, padding='VALID',
                scope='AvgPool_1a_5x5')
            aux_1ogits = slim.conv2d(aux_logits, 128, [1, 1],
                                     scope='Conv2d_1b_1x1')
            aux_logits = slim.conv2d(
                aux_logits, 768, [5, 5],
                weights_initializer=trunc_normal(0.01),
                padding='VALID', scope='Conv2d_2a_5x5')
            aux_logits = slim.conv2d(
                aux_logits, num_classes, [1, 1], activation_fn=None,
                normalizer_fn=None, weights_initializer=trunc_normal(0.001),
                scope='Conv2d_2b_1x1')
            if spatial_squeeze:
                aux_logits = tf.squeeze(aux_logits, [1, 2],
                                        name='SpatialSqueeze')
            end_points['AuxLogits '] = aux_logits

        with tf.variable_scope('Logits'):
            net = slim.avg_pool2d(net, [8, 8], padding='VALID',
                                  scope='AvgPool_1a_8x8')
            net = slim.dropout(net, keep_prob=dropout_keep_prob,
                               scope='Dropout_1b')
            end_points['PreLogits'] = net
            logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                                 normalizer_fn=None, scope='Conv2d_1c_1x1')
            if spatial_squeeze:
                logits = tf.squeeze(logits, [1, 2], name='Spatialsqueeze')
        end_points['Logits'] = logits
        end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
return logits, end_points
运行结果及报错内容

Traceback (most recent call last):
File "C:/Users/Admin/PycharmProjects/pythonProject/Google Net.py", line 3, in
slim = tf.contrib.slim
AttributeError: module 'tensorflow' has no attribute 'contrib'

在 'init.py | init.py' 中找不到引用 'contrib'
在 'init.py | init.py' 中找不到引用 'truncated_normal_initializer'
在 'init.py | init.py' 中找不到引用 'GraphKeys'
在 'init.py | init.py' 中找不到引用 'variable_scope'
类 'float' 未定义 'getitem',所以不能对其实例使用 '[]' 运算符

我的解答思路和尝试过的方法
我想要达到的结果
  • 写回答

2条回答 默认 最新

  • 爱晚乏客游 2022-05-26 09:20
    关注

    contrib已经在Tensorflow2.x弃用了,要么换1.x的版本,要么改代码,具体还需要去查一下这个api在2.x版本变成什么了,麻烦的很,早转pytorch早轻松

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

问题事件

  • 系统已结题 6月3日
  • 已采纳回答 5月26日
  • 创建了问题 5月25日

悬赏问题

  • ¥15 vba参数转c++ SAFEARRAY
  • ¥20 Win11测试yolov4,“找不到nvcuda.dll”怎么办?
  • ¥15 simulink绘制bode图
  • ¥15 php_network_getaddresses: getaddrinfo failed: Name or service not known
  • ¥15 用msg发消息出现的问题
  • ¥15 unity3d机械臂
  • ¥20 判断两个表是否完全相同
  • ¥20 工控机出现散热器转一下停一下这种情况,是什么原因造成的
  • ¥15 双显卡,启动docker容器报错。
  • ¥15 想编写一个期货跨期套利的程序