2301_77482663 2023-04-15 09:59 采纳率: 82.4%

# MATLAB 解线性方程组

• 写回答

#### 2条回答默认 最新

• 社区专家-Monster-XH 2023-04-15 10:39
关注

基于Monster 组和GPT的调写：
2

``````% 定义系数矩阵和常数向量
A = [0.001 2.000 3.000; -1.000 3.712 4.623; -2.000 1.072 5.643];
b = [1.000; 2.000; 3.000];

% 顺序消元法求解
x1 = A\b;

% 列主元消元法求解
[L,U,P] = lu(A);
y = L\(P*b);
x2 = U\y;

% 输出结果并与真实解进行比较
fprintf('顺序消元法求解结果：\n');
disp(x1);
fprintf('列主元消元法求解结果：\n');
disp(x2);
fprintf('真实解：\n');
x_true = [-0.4904; -0.05104; 0.3675];
disp(x_true);

fprintf('顺序消元法误差：\n');
disp(norm(x1 - x_true));
fprintf('列主元消元法误差：\n');
disp(norm(x2 - x_true));

``````

4

``````% 定义系数矩阵
A = [2 -1 0 0; -1 2 -1 0; 0 -1 2 -1; 0 0 -1 2];
% 定义右侧常数向量
b = [0; 0; 0; 5];

% 使用追赶法求解线性方程组
n = length(b);
c = diag(A, -1);
d = diag(A);
e = diag(A, 1);
% 前向消元
for i = 2:n
factor = c(i-1) / d(i-1);
d(i) = d(i) - factor * e(i-1);
b(i) = b(i) - factor * b(i-1);
end
% 回代求解
x = zeros(n, 1);
x(n) = b(n) / d(n);
for i = n-1:-1:1
x(i) = (b(i) - e(i) * x(i+1)) / d(i);
end

% 输出解向量
disp(x);

``````

4.顺序消元法

``````% 定义系数矩阵和常数向量
A = [1.1348, 3.8326, 1.1651, 3.4017;
0.5301, 1.7875, 2.5330, 1.5435;
3.4129, 4.9317, 8.7643, 1.3142;
1.2371, 4.9998, 10.6721, 0.0147];
b = [9.5342; 6.3941; 18.4231; 16.9237];

% 高斯消元求解方程组
n = length(b);
for k = 1:n-1
for i = k+1:n
factor = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - factor*A(k,k+1:n);
b(i) = b(i) - factor*b(k);
end
end

% 回代求解方程组
x = zeros(n,1);
x(n) = b(n)/A(n,n);
for i = n-1:-1:1
x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,i);
end

% 输出结果
disp('顺序消元法结果：');
disp(x);

``````

列主元消元法

``````
% 定义系数矩阵和常数向量
A = [1.1348, 3.8326, 1.1651, 3.4017;
0.5301, 1.7875, 2.5330, 1.5435;
3.4129, 4.9317, 8.7643, 1.3142;
1.2371, 4.9998, 10.6721, 0.0147];
b = [9.5342; 6.3941; 18.4231; 16.9237];

% 列主元消元求解方程组
n = length(b);
for k = 1:n-1
[~,maxidx] = max(abs(A(k:n,k)));  % 找到当前列中绝对值最大的元素所在行
maxidx = maxidx + k - 1;
if A(maxidx,k) == 0   % 避免主元为0的情况
error('矩阵不可逆');
end
% 交换当前行和主元所在行
if maxidx ~= k
A([k,maxidx],k:n) = A([maxidx,k],k:n);
b([k,maxidx]) = b([maxidx,k]);
end
% 消元
for i = k+1:n
factor = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - factor*A(k,k+1:n);
b(i) = b(i) - factor*b(k);
end
end

% 回代求解方程组
x = zeros(n,1);
x(n) = b(n)/A(n,n);
for i = n-1:-1:1
x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,i);
end

% 输出结果
disp('列主元消元法结果：');
disp(x);

``````

本回答被题主选为最佳回答 , 对您是否有帮助呢?
评论 编辑记录

• 系统已结题 4月23日
• 已采纳回答 4月15日
• 创建了问题 4月15日

#### 悬赏问题

• ¥15 拟通过pc下指令到安卓系统，如果追求响应速度，尽可能无延迟，是不是用安卓模拟器会优于实体的安卓手机？如果是，可以快多少毫秒？
• ¥20 神经网络Sequential name=sequential, built=False
• ¥16 Qphython 用xlrd读取excel报错
• ¥15 单片机学习顺序问题！！
• ¥15 ikuai客户端多拨vpn，重启总是有个别重拨不上
• ¥20 关于#anlogic#sdram#的问题，如何解决？(关键词-performance)
• ¥15 相敏解调 matlab
• ¥15 求lingo代码和思路
• ¥15 公交车和无人机协同运输
• ¥15 stm32代码移植没反应