douyan1972 2017-09-22 14:20
浏览 187


I'm trying to setup a classical MNIST challenge model with keras, then save the tensorflow graph and subsequently load it in Go and evaluate with some input. I've been following this article which supplies full code on github. Nils is using just tensorflow to setup the comp.graph but I would like to use keras. I managd to save the model the same way as he does


   model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 input_shape=(28,28,1), name="inputNode"))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax', name="inferNode"))

which runs ok, trains and evaluates and then saving as posted above:

builder = tf.saved_model.builder.SavedModelBuilder("mnistmodel_my")
# GOLANG note that we must tag our model so that we can retrieve it at inference-time
builder.add_meta_graph_and_variables(sess, ["serve"])

Which I then try to evaluate as :

result, runErr := model.Session.Run(
            model.Graph.Operation("inputNode").Output(0): tensor,

In Go I follow the example but when evaluating, I get:

    panic: nil-Operation. If the Output was created with a Scope object, see Scope.Err() for details.

goroutine 1 [running]:, 0x0, 0x0, 0x0)
    /Users/air/go/src/ +0xbb, 0xc420047ef0, 0x1, 0x1, 0x0, 0x0, 0x0, 0xc4200723c8)
    /Users/air/go/src/ +0x22d*Session).Run(0xc420078060, 0xc42006e210, 0xc420047ef0, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, ...)
    /Users/air/go/src/ +0x153
    /Users/air/PycharmProjects/GoTensor/custom.go:36 +0x341
exit status 2

Since it says nil-Operation I think I might have incorrectly labelled the nodes. But I don't know which other nodes should I then label?

Many thanks!!!

  • 写回答

1条回答 默认 最新

  • dpoppu4300 2017-09-22 16:23

    Your code should work fine. You're right about the cause of the nil-operation.

    You just have to find the complete node name of your "inputNode".

    From python, after your model definition, you can loop over the graph nodes and look for the complete name, in that way:

    for n in sess.graph.as_graph_def().node:
        if "inputNode" in

    Once you got the complete name, you can use it in your Go program.

    Also, I suggest you to use a more complete and easy to use wrapper around the tensorflow API: tfgo

    本回答被题主选为最佳回答 , 对您是否有帮助呢?



  • ¥50 win10 LTSC 虚拟键盘不弹出
  • ¥30 微信小程序请求失败,网页能正常带锁访问
  • ¥15 对语音信号进行变调时,间接改变时序从而实现语音变速,进而将变调与变速同时实现、参数合成法换为波形合成法
  • ¥15 Python实现hog特征图可视化
  • ¥30 德飞莱51单片机实现C4炸弹
  • ¥50 CrossLink-LIF-MD6000 型 FPGA 的 CMOS 转 MIPI D-PHY IP 核功能使用异常
  • ¥15 proteus控制16x16LED点阵显示屏的设计
  • ¥30 求会做山景bp1048b2程序的。做直播声卡用
  • ¥15 求数学建模论文问题指导
  • ¥15 51单片机与数码管实现电子琴