faster-rcnn第一次迭代完之后卡住了

图片说明

之前我用其它数据集跑过了,没有问题,这次跑就出问题了,我用的是12G的显存,泰坦。所以应该不是硬件配置不够,希望大神们能帮我解答一下。。。

1个回答

重新更换一个IP地址试试

hello_levy
hello_levy 换一个IP地址,什么意思?
3 年多之前 回复
Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
在win10系统中使用python运行faster-rcnn训练自己的数据集出现问题
在win10系统中使用python运行faster-rcnn训练自己的数据集出现以下问题: I0417 16:38:45.682274 7396 layer_factory.hpp:77] Creating layer rpn_cls_score_rpn_cls_score*** Check failure stack trace: *** 请问该问题产生的原因有可能是哪些?应该怎么解决?
Faster-RCNN-TensorFlow-Python3-master训练后,如何得到AP,mAP的结果
查了很多资料,tf-faster-rcnn和caffe-faster-rcnn里都是用test__net.py 来评估训练结果。但是我用的是Faster-RCNN-TensorFlow-Python3-master,里面没有test_net.py。那要怎么获得AP和mAP的结果呢?
faster-rcnn显示 error using fix
恳请各位大神帮忙看看,报错如下, Error using fix Too many input arguments Error in proposal_train(line 86) fix validation data Error in Faster_RCNN_Train.do_proposal_train(line 7) model_stage.output_model_file=proposal_train(conf,dataset,imdb_train,dataset,roidb_train,… Error in script_faster_rcnn__VOC2007_ZF(line 45) model.stae1_rpn =Faster_RCNN_Train.do_proposal_train(conf_proposal,dataset,model,stage1_rpn,opts.do_val);
faster-RCNN 分类层
请问RPN分类层cls_score为什么要输出两个参数:每个anchor的前景概率和背景概率?背景概率不就等于(1-前景概率)吗?
faster-rcnn 关于预训练的问题
faster -rcnn 训练分成两步: 1. per-train 采用Image Net的数据集(1000类,一千万张图片) 2. fine-tuning 采用pascal voc _ 2007 (20类,一万张图片) 或其他数据集 问题: 如果我想训练另外一个数据集,例如做细胞检测,大概有三类,可不可以直接用第一步per-train的模型来进行初始化参数?如果不可以,大概需要多少张细胞图像做预训练?
faster-rcnn迭代到一定次数停住了(自己数据集)
![图片说明](https://img-ask.csdn.net/upload/201803/11/1520732333_841301.png) 求问怎么解决?
faster-rcnn的bounding boxes是否可以改进啊
传统的bounding boxes是水平的,也就是正方形,(x y w h)怎么做成有方向的oriented bounding boxes (x1 y1 x2 y2 x3 y3 x4 y4)。 或者有没有这种有方向的bounding boxes目标检测算法,求大佬解答 类似下图 ![图片说明](https://img-ask.csdn.net/upload/201803/10/1520641104_790494.jpg)
急急急!!!!跪求大神帮助 faster-rcnn lib编译问题,win10系统下
本人电脑上安装了vs2015,cuda9.0+1060显卡,python3.6,系统win10,框架是mxnet以及pytorch0.4版本,近日在跑github上的faster-rcnn的程序时,发现在build cython模块时出现下面错误,网上似乎没有类似情况,希望有大神碰到类似情况的能帮帮我。 ``` Traceback (most recent call last): File "build.py", line 34, in <module> ffi.build() File "D:\anaconda\lib\site-packages\torch\utils\ffi\__init__.py", line 184, in build _build_extension(ffi, cffi_wrapper_name, target_dir, verbose) File "D:\anaconda\lib\site-packages\torch\utils\ffi\__init__.py", line 108, in _build_extension outfile = ffi.compile(tmpdir=tmpdir, verbose=verbose, target=libname) File "D:\anaconda\lib\site-packages\cffi\api.py", line 697, in compile compiler_verbose=verbose, debug=debug, **kwds) File "D:\anaconda\lib\site-packages\cffi\recompiler.py", line 1520, in recompile compiler_verbose, debug) File "D:\anaconda\lib\site-packages\cffi\ffiplatform.py", line 22, in compile outputfilename = _build(tmpdir, ext, compiler_verbose, debug) File "D:\anaconda\lib\site-packages\cffi\ffiplatform.py", line 51, in _build dist.run_command('build_ext') File "D:\anaconda\lib\distutils\dist.py", line 974, in run_command cmd_obj.run() File "D:\anaconda\lib\site-packages\setuptools\command\build_ext.py", line 78, in run _build_ext.run(self) File "D:\anaconda\lib\site-packages\Cython\Distutils\old_build_ext.py", line 186, in run _build_ext.build_ext.run(self) File "D:\anaconda\lib\distutils\command\build_ext.py", line 308, in run force=self.force) File "D:\anaconda\lib\distutils\ccompiler.py", line 1031, in new_compiler return klass(None, dry_run, force) File "D:\anaconda\lib\distutils\cygwinccompiler.py", line 285, in __init__ CygwinCCompiler.__init__ (self, verbose, dry_run, force) File "D:\anaconda\lib\distutils\cygwinccompiler.py", line 129, in __init__ if self.ld_version >= "2.10.90": TypeError: '>=' not supported between instances of 'NoneType' and 'str' ``` 后来我又试了试用gcc编译器,但是仍然存在一下问题(实在是没办法了。。。) ``` C:\MinGW\bin\g++.exe --shared -s build\temp.win-amd64-3.6\Release\gpu_nms.o build\temp.win-amd64-3.6\Release\gpu_nms.cp36-win_amd64.def -LD:\anaconda\libs -LD:\anaconda\PCbuild\amd64 -lcublas -lpython36 -lmsvcr140 -o build\lib.win-amd64-3.6\gpu_nms.cp36-win_amd64.pyd build\temp.win-amd64-3.6\Release\gpu_nms.o: file not recognized: File format not recognized collect2.exe: error: ld returned 1 exit status error: command 'C:\\MinGW\\bin\\g++.exe' failed with exit status 1 ```
Windows10+Tensorflow+faster-rcnn环境搭建bao'cuo
![图片说明](https://img-ask.csdn.net/upload/201812/09/1544365223_74260.png) win10 配置Fast R-cnn,python版本是3.5.1 当运行python setup.py build_ext --inplace时。 LINK : warning LNK4001: 未指定对象文件;已使用库 LINK : warning LNK4068: 未指定 /MACHINE;默认设置为 X64 LINK : fatal error LNK1159: 没有指定输出文件 error: command 'E:\\Program Files\\VS14\\VC\\BIN\\amd64\\link.exe' failed with exit status 1159 想请问下这个错误要如何排除呢?
ubuntu跑faster_rcnn的demo不出界面
ubuntu跑faster_rcnn的demo不出界面,但是也没有报错,就是不出界面是怎么回事? ubuntu 16 cuda 8.0
window faster rcnn error -sed=c99.
F:\Caffe-cp\faster_rcnn\py-faster-rcnn\lib>python setup.py install home = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5 running install running bdist_egg running egg_info writing fast_rcnn.egg-info\PKG-INFO writing top-level names to fast_rcnn.egg-info\top_level.txt writing dependency_links to fast_rcnn.egg-info\dependency_links.txt reading manifest file 'fast_rcnn.egg-info\SOURCES.txt' writing manifest file 'fast_rcnn.egg-info\SOURCES.txt' installing library code to build\bdist.win-amd64\egg running install_lib running build_ext skipping 'utils\bbox.c' Cython extension (up-to-date) skipping 'nms\cpu_nms.c' Cython extension (up-to-date) skipping 'pycocotools\_mask.c' Cython extension (up-to-date) building 'pycocotools._mask' extension C:\Users\Joker\AppData\Local\Programs\Common\Microsoft\Visual C++ for Python\9.0\VC\Bin\amd64\cl.exe /c /nologo /Ox /MD /W3 /GS- /DNDEBUG -IE:\anaconda2\anaconda\lib\site-packages\numpy\core\include -Ipycocotools -IE:\anaconda2\anaconda\include -IE:\anaconda2\anaconda\PC /Tcpycocotools\maskApi.c /Fobuild\temp.win-amd64-2.7\Release\pycocotools\maskApi.obj -std=c99 cl : Command line warning D9002 : ignoring unknown option '-std=c99' maskApi.c f:\caffe-cp\faster_rcnn\py-faster-rcnn\lib\pycocotools\maskApi.h(8) : fatal error C1083: Cannot open include file: 'stdbool.h': No such file or directory error: command 'C:\\Users\\Joker\\AppData\\Local\\Programs\\Common\\Microsoft\\Visual C++ for Python\\9.0\\VC\\Bin\\amd64\\cl.exe' failed with exit status 2
win_caffe_py_fast_rcnn训练报错问题。
layer { name: "rpn_bbox_pred" type: "Convolution" bottom: "rpn_conv1Process Process-1: Traceback (most recent call last): File "D:\Anaconda\Anaconda\lib\multiprocessing\process.py", line 267, in _bootstrap self.run() File "D:\Anaconda\Anaconda\lib\multiprocessing\process.py", line 114, in run self._target(*self._args, **self._kwargs) File "D:\py-faster-rcnn\tools\train_faster_rcnn_alt_opt.py", line 129, in train_rpn max_iters=max_iters) File "D:\py-faster-rcnn\tools\..\lib\fast_rcnn\train.py", line 160, in train_net pretrained_model=pretrained_model) File "D:\py-faster-rcnn\tools\..\lib\fast_rcnn\train.py", line 46, in __init__ self.solver = caffe.SGDSolver(solver_prototxt) File "D:\py-faster-rcnn\tools\..\lib\roi_data_layer\layer.py", line 128, in setup top[idx].reshape(1, self._num_classes * 4) IndexError: Index out of range I0415 19:38:05.625026 12668 layer_factory.cpp:58] Creating layer input-data I0415 19:38:05.682178 12668 net.cpp:84] Creating Layer input-data I0415 19:38:05.682178 12668 net.cpp:380] input-data -> data I0415 19:38:05.682178 12668 net.cpp:380] input-data -> im_info I0415 19:38:05.682178 12668 net.cpp:380] input-data -> gt_boxes 然后就卡在这里了。
ModuleNotFoundError: No module named 'cython'
在使用Fast-RCNN代码时https://github.com/smallcorgi/Faster-RCNN_TF ,按照步骤,第二步make后出现了这个问题,但是我的cython已经装了,可能是什么问题呢? ![图片说明](https://img-ask.csdn.net/upload/201801/26/1516968516_512053.png)
faster rcnn运行demo出现错误
faster rcnn配置好之后运行 ./tools/demo.py出现如下错误:: Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type: Python
Faster Rcnn训练自己的数据出现问题!求解
![图片说明](https://img-ask.csdn.net/upload/202001/20/1579495626_503757.png) 如上,本来只显示image invalid, skipping 后来我在train,py中加上打印了错误信息,报错如上。 我在https://blog.csdn.net/JJJKJJ/article/details/103141229 该帖子中一步一步完成了训练和demo,都没有问题,换成自己的数据以后就再也不行了,找遍全网也没有找到完全一样的问题,如何解决? 我自己的数据为1920*1080分辨率,使用labelImg标注,制作成VOC2007格式
现在主流的医学图像诊断用的是什么方法?毕业设计想搞一个相关的题目
要用CNN的方法。之前用了faster-rcnn,采用的是vgg16的网络,但是准确率不够高,也就80%左右,达不到医学方面的要求。 是我采用的这个方法不行吗?如果是,有没有什么方法可以把准确率提高到90%乃至95%?最好推荐些医学诊断相关的论文。望指点迷津!
faster rcnn训练的时候应该是哪个层出了问题
+ echo Logging output to experiments/logs/faster_rcnn_alt_opt_ZF_.txt.2017-04-19_01-16-47 Logging output to experiments/logs/faster_rcnn_alt_opt_ZF_.txt.2017-04-19_01-16-47 + ./tools/train_faster_rcnn_alt_opt.py --gpu 0 --net_name ZF --weights data/imagenet_models/CaffeNet.v2.caffemodel --imdb voc_2007_trainval --cfg experiments/cfgs/faster_rcnn_alt_opt.yml Called with args: Namespace(cfg_file='experiments/cfgs/faster_rcnn_alt_opt.yml', gpu_id=0, imdb_name='voc_2007_trainval', net_name='ZF', pretrained_model='data/imagenet_models/CaffeNet.v2.caffemodel', set_cfgs=None) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Stage 1 RPN, init from ImageNet model ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Init model: data/imagenet_models/CaffeNet.v2.caffemodel Using config: {'DATA_DIR': 'E:\\caffe-frcnn\\py-faster-rcnn-master\\data', 'DEDUP_BOXES': 0.0625, 'EPS': 1e-14, 'EXP_DIR': 'default', 'GPU_ID': 0, 'MATLAB': 'matlab', 'MODELS_DIR': 'E:\\caffe-frcnn\\py-faster-rcnn-master\\models\\pascal_voc', 'PIXEL_MEANS': array([[[ 102.9801, 115.9465, 122.7717]]]), 'RNG_SEED': 3, 'ROOT_DIR': 'E:\\caffe-frcnn\\py-faster-rcnn-master', 'TEST': {'BBOX_REG': True, 'HAS_RPN': False, 'MAX_SIZE': 1000, 'NMS': 0.3, 'PROPOSAL_METHOD': 'selective_search', 'RPN_MIN_SIZE': 16, 'RPN_NMS_THRESH': 0.7, 'RPN_POST_NMS_TOP_N': 300, 'RPN_PRE_NMS_TOP_N': 6000, 'SCALES': [600], 'SVM': False}, 'TRAIN': {'ASPECT_GROUPING': True, 'BATCH_SIZE': 128, 'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0], 'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0], 'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2], 'BBOX_NORMALIZE_TARGETS': True, 'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': False, 'BBOX_REG': False, 'BBOX_THRESH': 0.5, 'BG_THRESH_HI': 0.5, 'BG_THRESH_LO': 0.1, 'FG_FRACTION': 0.25, 'FG_THRESH': 0.5, 'HAS_RPN': True, 'IMS_PER_BATCH': 1, 'MAX_SIZE': 1000, 'PROPOSAL_METHOD': 'gt', 'RPN_BATCHSIZE': 256, 'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0], 'RPN_CLOBBER_POSITIVES': False, 'RPN_FG_FRACTION': 0.5, 'RPN_MIN_SIZE': 16, 'RPN_NEGATIVE_OVERLAP': 0.3, 'RPN_NMS_THRESH': 0.7, 'RPN_POSITIVE_OVERLAP': 0.7, 'RPN_POSITIVE_WEIGHT': -1.0, 'RPN_POST_NMS_TOP_N': 2000, 'RPN_PRE_NMS_TOP_N': 12000, 'SCALES': [600], 'SNAPSHOT_INFIX': '', 'SNAPSHOT_ITERS': 10000, 'USE_FLIPPED': True, 'USE_PREFETCH': False}, 'USE_GPU_NMS': True} Loaded dataset `voc_2007_trainval` for training Set proposal method: gt Appending horizontally-flipped training examples... voc_2007_trainval gt roidb loaded from E:\caffe-frcnn\py-faster-rcnn-master\data\cache\voc_2007_trainval_gt_roidb.pkl done Preparing training data... done roidb len: 100 Output will be saved to `E:\caffe-frcnn\py-faster-rcnn-master\output\default\voc_2007_trainval` Filtered 0 roidb entries: 100 -> 100 WARNING: Logging before InitGoogleLogging() is written to STDERR I0419 01:16:54.964942 25240 common.cpp:36] System entropy source not available, using fallback algorithm to generate seed instead. I0419 01:16:55.073168 25240 solver.cpp:44] Initializing solver from parameters: train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt" base_lr: 0.001 display: 20 lr_policy: "step" gamma: 0.1 momentum: 0.9 weight_decay: 0.0005 stepsize: 60000 snapshot: 0 snapshot_prefix: "zf_rpn" average_loss: 100 I0419 01:16:55.073168 25240 solver.cpp:77] Creating training net from train_net file: models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt I0419 01:16:55.074168 25240 net.cpp:51] Initializing net from parameters: name: "ZF" state { phase: TRAIN } layer { name: "input-data" type: "Python" top: "data" top: "im_info" top: "gt_boxes" python_param { module: "roi_data_layer.layer" layer: "RoIDataLayer" param_str: "\'num_classes\': 2" } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 96 pad: 3 kernel_size: 7 stride: 2 } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "LRN" bottom: "conv1" top: "norm1" lrn_param { local_size: 3 alpha: 5e-05 beta: 0.75 norm_region: WITHIN_CHANNEL engine: CAFFE } } layer { name: "pool1" type: "Pooling" bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 pad: 1 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 256 pad: 2 kernel_size: 5 stride: 2 } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "norm2" type: "LRN" bottom: "conv2" top: "norm2" lrn_param { local_size: 3 alpha: 5e-05 beta: 0.75 norm_region: WITHIN_CHANNEL engine: CAFFE } } layer { name: "pool2" type: "Pooling" bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 pad: 1 } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 stride: 1 } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 stride: 1 } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 1 } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "rpn_conv1" type: "Convolution" bottom: "conv5" top: "rpn_conv1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "rpn_relu1" type: "ReLU" bottom: "rpn_conv1" top: "rpn_conv1" } layer { name: "rpn_cls_score" type: "Convolution" bottom: "rpn_conv1" top: "rpn_cls_score" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 18 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "rpn_bbox_pred" type: "Convolution" bottom: "rpn_conv1"RoiDataLayer: name_to_top: {'gt_boxes': 2, 'data': 0, 'im_info': 1} top: "rpn_bbox_pred" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 36 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "rpn_cls_score_reshape" type: "Reshape" bottom: "rpn_cls_score" top: "rpn_cls_score_reshape" reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } } } layer { name: "rpn-data" type: "Python" bottom: "rpn_cls_score" bottom: "gt_boxes" bottom: "im_info" bottom: "data" top: "rpn_labels" top: "rpn_bbox_targets" top: "rpn_bbox_inside_weights" top: "rpn_bbox_outside_weights" python_param { module: "rpn.anchor_target_layer" layer: "AnchorTargetLayer" param_str: "\'feat_stride\': 16" } } layer { name: "rpn_loss_cls" type: "SoftmaxWithLoss" bottom: "rpn_cls_score_reshape" bottom: "rpn_labels" top: "rpn_cls_loss" loss_weight: 1 propagate_down: true propagate_down: false loss_param { ignore_label: -1 normalize: true } } layer { name: "rpn_loss_bbox" type: "SmoothL1Loss" bottom: "rpn_bbox_pred" bottom: "rpn_bbox_targets" bottom: "rpn_bbox_inside_weights" bottom: "rpn_bbox_outside_weights" top: "rpn_loss_bbox" loss_weight: 1 smooth_l1_loss_param { sigma: 3 } } layer { name: "dummy_roi_pool_conv5" type: "DummyData" top: "dummy_roi_pool_conv5" dummy_data_param { data_filler { type: "gaussian" std: 0.01 } shape { dim: 1 dim: 9216 } } } layer { name: "fc6" type: "InnerProduct" bottom: "dummy_roi_pool_conv5" top: "fc6" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } inner_product_param { num_output: 4096 } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } inner_product_param { num_output: 4096 } } layer { name: "silence_fc7" type: "Silence" bottom: "fc7" } I0419 01:16:55.074668 25240 layer_factory.cpp:58] Creating layer input-data I0419 01:16:55.109673 25240 net.cpp:84] Creating Layer input-data I0419 01:16:55.109673 25240 net.cpp:380] input-data -> data I0419 01:16:55.109673 25240 net.cpp:380] input-data -> im_info I0419 01:16:55.109673 25240 net.cpp:380] input-data -> gt_boxes I0419 01:16:55.111171 25240 net.cpp:122] Setting up input-data I0419 01:16:55.111171 25240 net.cpp:129] Top shape: 1 3 600 1000 (1800000) I0419 01:16:55.111171 25240 net.cpp:129] Top shape: 1 3 (3) I0419 01:16:55.111668 25240 net.cpp:129] Top shape: 1 4 (4) I0419 01:16:55.111668 25240 net.cpp:137] Memory required for data: 7200028 I0419 01:16:55.111668 25240 layer_factory.cpp:58] Creating layer data_input-data_0_split I0419 01:16:55.111668 25240 net.cpp:84] Creating Layer data_input-data_0_split I0419 01:16:55.111668 25240 net.cpp:406] data_input-data_0_split <- data I0419 01:16:55.111668 25240 net.cpp:380] data_input-data_0_split -> data_input-data_0_split_0 I0419 01:16:55.111668 25240 net.cpp:380] data_input-data_0_split -> data_input-data_0_split_1 I0419 01:16:55.111668 25240 net.cpp:122] Setting up data_input-data_0_split I0419 01:16:55.111668 25240 net.cpp:129] Top shape: 1 3 600 1000 (1800000) I0419 01:16:55.111668 25240 net.cpp:129] Top shape: 1 3 600 1000 (1800000) I0419 01:16:55.111668 25240 net.cpp:137] Memory required for data: 21600028 I0419 01:16:55.111668 25240 layer_factory.cpp:58] Creating layer conv1 I0419 01:16:55.111668 25240 net.cpp:84] Creating Layer conv1 I0419 01:16:55.111668 25240 net.cpp:406] conv1 <- data_input-data_0_split_0 I0419 01:16:55.111668 25240 net.cpp:380] conv1 -> conv1 I0419 01:16:55.577394 25240 net.cpp:122] Setting up conv1 I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 300 500 (14400000) I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 79200028 I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer relu1 I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer relu1 I0419 01:16:55.577394 25240 net.cpp:406] relu1 <- conv1 I0419 01:16:55.577394 25240 net.cpp:367] relu1 -> conv1 (in-place) I0419 01:16:55.577394 25240 net.cpp:122] Setting up relu1 I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 300 500 (14400000) I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 136800028 I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer norm1 I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer norm1 I0419 01:16:55.577394 25240 net.cpp:406] norm1 <- conv1 I0419 01:16:55.577394 25240 net.cpp:380] norm1 -> norm1 I0419 01:16:55.577394 25240 net.cpp:122] Setting up norm1 I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 300 500 (14400000) I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 194400028 I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer pool1 I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer pool1 I0419 01:16:55.577394 25240 net.cpp:406] pool1 <- norm1 I0419 01:16:55.577394 25240 net.cpp:380] pool1 -> pool1 I0419 01:16:55.577394 25240 net.cpp:122] Setting up pool1 I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 151 251 (3638496) I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 208954012 I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer conv2 I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer conv2 I0419 01:16:55.577394 25240 net.cpp:406] conv2 <- pool1 I0419 01:16:55.577394 25240 net.cpp:380] conv2 -> conv2 I0419 01:16:55.593016 25240 net.cpp:122] Setting up conv2 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 76 126 (2451456) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 218759836 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer relu2 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer relu2 I0419 01:16:55.593016 25240 net.cpp:406] relu2 <- conv2 I0419 01:16:55.593016 25240 net.cpp:367] relu2 -> conv2 (in-place) I0419 01:16:55.593016 25240 net.cpp:122] Setting up relu2 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 76 126 (2451456) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 228565660 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer norm2 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer norm2 I0419 01:16:55.593016 25240 net.cpp:406] norm2 <- conv2 I0419 01:16:55.593016 25240 net.cpp:380] norm2 -> norm2 I0419 01:16:55.593016 25240 net.cpp:122] Setting up norm2 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 76 126 (2451456) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 238371484 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer pool2 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer pool2 I0419 01:16:55.593016 25240 net.cpp:406] pool2 <- norm2 I0419 01:16:55.593016 25240 net.cpp:380] pool2 -> pool2 I0419 01:16:55.593016 25240 net.cpp:122] Setting up pool2 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 240927388 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer conv3 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer conv3 I0419 01:16:55.593016 25240 net.cpp:406] conv3 <- pool2 I0419 01:16:55.593016 25240 net.cpp:380] conv3 -> conv3 I0419 01:16:55.593016 25240 net.cpp:122] Setting up conv3 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 244761244 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer relu3 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer relu3 I0419 01:16:55.593016 25240 net.cpp:406] relu3 <- conv3 I0419 01:16:55.593016 25240 net.cpp:367] relu3 -> conv3 (in-place) I0419 01:16:55.593016 25240 net.cpp:122] Setting up relu3 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 248595100 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer conv4 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer conv4 I0419 01:16:55.593016 25240 net.cpp:406] conv4 <- conv3 I0419 01:16:55.593016 25240 net.cpp:380] conv4 -> conv4 I0419 01:16:55.593016 25240 net.cpp:122] Setting up conv4 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 252428956 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer relu4 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer relu4 I0419 01:16:55.593016 25240 net.cpp:406] relu4 <- conv4 I0419 01:16:55.593016 25240 net.cpp:367] relu4 -> conv4 (in-place) I0419 01:16:55.593016 25240 net.cpp:122] Setting up relu4 I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464) I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 256262812 I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer conv5 I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer conv5 I0419 01:16:55.593016 25240 net.cpp:406] conv5 <- conv4 I0419 01:16:55.593016 25240 net.cpp:380] conv5 -> conv5 I0419 01:16:55.608644 25240 net.cpp:122] Setting up conv5 I0419 01:16:55.608644 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.608644 25240 net.cpp:137] Memory required for data: 258818716 I0419 01:16:55.608644 25240 layer_factory.cpp:58] Creating layer relu5 I0419 01:16:55.608644 25240 net.cpp:84] Creating Layer relu5 I0419 01:16:55.608644 25240 net.cpp:406] relu5 <- conv5 I0419 01:16:55.608644 25240 net.cpp:367] relu5 -> conv5 (in-place) I0419 01:16:55.608644 25240 net.cpp:122] Setting up relu5 I0419 01:16:55.608644 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.608644 25240 net.cpp:137] Memory required for data: 261374620 I0419 01:16:55.608644 25240 layer_factory.cpp:58] Creating layer rpn_conv1 I0419 01:16:55.608644 25240 net.cpp:84] Creating Layer rpn_conv1 I0419 01:16:55.608644 25240 net.cpp:406] rpn_conv1 <- conv5 I0419 01:16:55.608644 25240 net.cpp:380] rpn_conv1 -> rpn_conv1 I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_conv1 I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 263930524 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_relu1 I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_relu1 I0419 01:16:55.624267 25240 net.cpp:406] rpn_relu1 <- rpn_conv1 I0419 01:16:55.624267 25240 net.cpp:367] rpn_relu1 -> rpn_conv1 (in-place) I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_relu1 I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 266486428 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_conv1_rpn_relu1_0_split I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_conv1_rpn_relu1_0_split I0419 01:16:55.624267 25240 net.cpp:406] rpn_conv1_rpn_relu1_0_split <- rpn_conv1 I0419 01:16:55.624267 25240 net.cpp:380] rpn_conv1_rpn_relu1_0_split -> rpn_conv1_rpn_relu1_0_split_0 I0419 01:16:55.624267 25240 net.cpp:380] rpn_conv1_rpn_relu1_0_split -> rpn_conv1_rpn_relu1_0_split_1 I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_conv1_rpn_relu1_0_split I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 271598236 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_cls_score I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_cls_score I0419 01:16:55.624267 25240 net.cpp:406] rpn_cls_score <- rpn_conv1_rpn_relu1_0_split_0 I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score -> rpn_cls_score I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_cls_score I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 18 39 64 (44928) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 271777948 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_cls_score_rpn_cls_score_0_split I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_cls_score_rpn_cls_score_0_split I0419 01:16:55.624267 25240 net.cpp:406] rpn_cls_score_rpn_cls_score_0_split <- rpn_cls_score I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score_rpn_cls_score_0_split -> rpn_cls_score_rpn_cls_score_0_split_0 I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score_rpn_cls_score_0_split -> rpn_cls_score_rpn_cls_score_0_split_1 I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_cls_score_rpn_cls_score_0_split I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 18 39 64 (44928) I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 18 39 64 (44928) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 272137372 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_bbox_pred I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_bbox_pred I0419 01:16:55.624267 25240 net.cpp:406] rpn_bbox_pred <- rpn_conv1_rpn_relu1_0_split_1 I0419 01:16:55.624267 25240 net.cpp:380] rpn_bbox_pred -> rpn_bbox_pred I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_bbox_pred I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 36 39 64 (89856) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 272496796 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_cls_score_reshape I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_cls_score_reshape I0419 01:16:55.624267 25240 net.cpp:406] rpn_cls_score_reshape <- rpn_cls_score_rpn_cls_score_0_split_0 I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score_reshape -> rpn_cls_score_reshape I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_cls_score_reshape I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 2 351 64 (44928) I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 272676508 I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn-data I0419 01:16:55.639891 25240 net.cpp:84] Creating Layer rpn-data I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- rpn_cls_score_rpn_cls_score_0_split_1 I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- gt_boxes I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- im_info I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- data_input-data_0_split_1 I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_labels I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_bbox_targets I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_bbox_inside_weights I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_bbox_outside_weights I0419 01:16:55.639891 25240 net.cpp:122] Setting up rpn-data I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 1 351 64 (22464) I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 36 39 64 (89856) I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 36 39 64 (89856) I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 36 39 64 (89856) I0419 01:16:55.639891 25240 net.cpp:137] Memory required for data: 273844636 I0419 01:16:55.639891 25240 layer_factory.cpp:58] Creating layer rpn_loss_cls I0419 01:16:55.639891 25240 net.cpp:84] Creating Layer rpn_loss_cls I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_cls <- rpn_cls_score_reshape I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_cls <- rpn_labels I0419 01:16:55.639891 25240 net.cpp:380] rpn_loss_cls -> rpn_cls_loss I0419 01:16:55.639891 25240 layer_factory.cpp:58] Creating layer rpn_loss_cls I0419 01:16:55.639891 25240 net.cpp:122] Setting up rpn_loss_cls I0419 01:16:55.639891 25240 net.cpp:129] Top shape: (1) I0419 01:16:55.639891 25240 net.cpp:132] with loss weight 1 I0419 01:16:55.639891 25240 net.cpp:137] Memory required for data: 273844640 I0419 01:16:55.639891 25240 layer_factory.cpp:58] Creating layer rpn_loss_bbox I0419 01:16:55.639891 25240 net.cpp:84] Creating Layer rpn_loss_bbox I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_bbox <- rpn_bbox_pred I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_bbox <- rpn_bbox_targets I0419 01:16:55.639891 2*** Check failure stack trace: ***
faster rcnn的train.prototxt 没有data层
最近在用faster rcnn训练数据,需要修改train.prototxt中data层的参数num_classes,但是train.prototxt没有data层,那我该如何修改呢?
slim微调后的模型可以用在tf-faster rcnn上进行细粒度测试吗?
这是用在tf-faster rcnn上的错误 ``` Traceback (most recent call last): File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1322, in _do_call return fn(*args) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1307, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.NotFoundError: Key resnet_v1_101/bbox_pred/biases not found in checkpoint [[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "../tools/demo.py", line 189, in <module> print(saver.restore(sess,tfmodel)) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1768, in restore six.reraise(exception_type, exception_value, exception_traceback) File "/home/lf/anaconda3/lib/python3.6/site-packages/six.py", line 693, in reraise raise value File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1752, in restore {self.saver_def.filename_tensor_name: save_path}) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 900, in run run_metadata_ptr) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1135, in _run feed_dict_tensor, options, run_metadata) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1316, in _do_run run_metadata) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.NotFoundError: Key resnet_v1_101/bbox_pred/biases not found in checkpoint [[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]] Caused by op 'save/RestoreV2', defined at: File "../tools/demo.py", line 187, in <module> saver = tf.train.Saver() File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1284, in __init__ self.build() File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1296, in build self._build(self._filename, build_save=True, build_restore=True) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1333, in _build build_save=build_save, build_restore=build_restore) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 781, in _build_internal restore_sequentially, reshape) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 400, in _AddRestoreOps restore_sequentially) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 832, in bulk_restore return io_ops.restore_v2(filename_tensor, names, slices, dtypes) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_io_ops.py", line 1463, in restore_v2 shape_and_slices=shape_and_slices, dtypes=dtypes, name=name) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3414, in create_op op_def=op_def) File "/home/lf/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1740, in __init__ self._traceback = self._graph._extract_stack() # pylint: disable=protected-access NotFoundError (see above for traceback): Key resnet_v1_101/bbox_pred/biases not found in checkpoint [[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, ..., DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]] ```
Kafka实战(三) - Kafka的自我修养与定位
Apache Kafka是消息引擎系统,也是一个分布式流处理平台(Distributed Streaming Platform) Kafka是LinkedIn公司内部孵化的项目。LinkedIn最开始有强烈的数据强实时处理方面的需求,其内部的诸多子系统要执行多种类型的数据处理与分析,主要包括业务系统和应用程序性能监控,以及用户行为数据处理等。 遇到的主要问题: 数据正确性不足 数据的收集主要...
volatile 与 synchronize 详解
Java支持多个线程同时访问一个对象或者对象的成员变量,由于每个线程可以拥有这个变量的拷贝(虽然对象以及成员变量分配的内存是在共享内存中的,但是每个执行的线程还是可以拥有一份拷贝,这样做的目的是加速程序的执行,这是现代多核处理器的一个显著特性),所以程序在执行过程中,一个线程看到的变量并不一定是最新的。 volatile 关键字volatile可以用来修饰字段(成员变量),就是告知程序任何对该变量...
Java学习的正确打开方式
在博主认为,对于入门级学习java的最佳学习方法莫过于视频+博客+书籍+总结,前三者博主将淋漓尽致地挥毫于这篇博客文章中,至于总结在于个人,实际上越到后面你会发现学习的最好方式就是阅读参考官方文档其次就是国内的书籍,博客次之,这又是一个层次了,这里暂时不提后面再谈。博主将为各位入门java保驾护航,各位只管冲鸭!!!上天是公平的,只要不辜负时间,时间自然不会辜负你。 何谓学习?博主所理解的学习,它是一个过程,是一个不断累积、不断沉淀、不断总结、善于传达自己的个人见解以及乐于分享的过程。
程序员必须掌握的核心算法有哪些?
由于我之前一直强调数据结构以及算法学习的重要性,所以就有一些读者经常问我,数据结构与算法应该要学习到哪个程度呢?,说实话,这个问题我不知道要怎么回答你,主要取决于你想学习到哪些程度,不过针对这个问题,我稍微总结一下我学过的算法知识点,以及我觉得值得学习的算法。这些算法与数据结构的学习大多数是零散的,并没有一本把他们全部覆盖的书籍。下面是我觉得值得学习的一些算法以及数据结构,当然,我也会整理一些看过...
有哪些让程序员受益终生的建议
从业五年多,辗转两个大厂,出过书,创过业,从技术小白成长为基层管理,联合几个业内大牛回答下这个问题,希望能帮到大家,记得帮我点赞哦。 敲黑板!!!读了这篇文章,你将知道如何才能进大厂,如何实现财务自由,如何在工作中游刃有余,这篇文章很长,但绝对是精品,记得帮我点赞哦!!!! 一腔肺腑之言,能看进去多少,就看你自己了!!! 目录: 在校生篇: 为什么要尽量进大厂? 如何选择语言及方...
大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了
大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...
linux系列之常用运维命令整理笔录
本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍了,慢慢积累一些其它拓展的命令,博客不定时更新 free -m 其中:m表示兆,也可以用g,注意都要小写 Men:表示物理内存统计 total:表示物理内存总数(total=used+free) use...
比特币原理详解
一、什么是比特币 比特币是一种电子货币,是一种基于密码学的货币,在2008年11月1日由中本聪发表比特币白皮书,文中提出了一种去中心化的电子记账系统,我们平时的电子现金是银行来记账,因为银行的背后是国家信用。去中心化电子记账系统是参与者共同记账。比特币可以防止主权危机、信用风险。其好处不多做赘述,这一层面介绍的文章很多,本文主要从更深层的技术原理角度进行介绍。 二、问题引入 假设现有4个人...
GitHub开源史上最大规模中文知识图谱
近日,一直致力于知识图谱研究的 OwnThink 平台在 Github 上开源了史上最大规模 1.4 亿中文知识图谱,其中数据是以(实体、属性、值),(实体、关系、实体)混合的形式组织,数据格式采用 csv 格式。 到目前为止,OwnThink 项目开放了对话机器人、知识图谱、语义理解、自然语言处理工具。知识图谱融合了两千五百多万的实体,拥有亿级别的实体属性关系,机器人采用了基于知识图谱的语义感...
程序员接私活怎样防止做完了不给钱?
首先跟大家说明一点,我们做 IT 类的外包开发,是非标品开发,所以很有可能在开发过程中会有这样那样的需求修改,而这种需求修改很容易造成扯皮,进而影响到费用支付,甚至出现做完了项目收不到钱的情况。 那么,怎么保证自己的薪酬安全呢? 我们在开工前,一定要做好一些证据方面的准备(也就是“讨薪”的理论依据),这其中最重要的就是需求文档和验收标准。一定要让需求方提供这两个文档资料作为开发的基础。之后开发...
网页实现一个简单的音乐播放器(大佬别看。(⊙﹏⊙))
今天闲着无事,就想写点东西。然后听了下歌,就打算写个播放器。 于是乎用h5 audio的加上js简单的播放器完工了。 演示地点演示 html代码如下` music 这个年纪 七月的风 音乐 ` 然后就是css`*{ margin: 0; padding: 0; text-decoration: none; list-...
微信支付崩溃了,但是更让马化腾和张小龙崩溃的竟然是……
loonggg读完需要3分钟速读仅需1分钟事件还得还原到昨天晚上,10 月 29 日晚上 20:09-21:14 之间,微信支付发生故障,全国微信支付交易无法正常进行。然...
Python十大装B语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
数据库优化 - SQL优化
以实际SQL入手,带你一步一步走上SQL优化之路!
2019年11月中国大陆编程语言排行榜
2019年11月2日,我统计了某招聘网站,获得有效程序员招聘数据9万条。针对招聘信息,提取编程语言关键字,并统计如下: 编程语言比例 rank pl_ percentage 1 java 33.62% 2 cpp 16.42% 3 c_sharp 12.82% 4 javascript 12.31% 5 python 7.93% 6 go 7.25% 7 p...
通俗易懂地给女朋友讲:线程池的内部原理
餐盘在灯光的照耀下格外晶莹洁白,女朋友拿起红酒杯轻轻地抿了一小口,对我说:“经常听你说线程池,到底线程池到底是个什么原理?”
《奇巧淫技》系列-python!!每天早上八点自动发送天气预报邮件到QQ邮箱
将代码部署服务器,每日早上定时获取到天气数据,并发送到邮箱。 也可以说是一个小型人工智障。 知识可以运用在不同地方,不一定非是天气预报。
经典算法(5)杨辉三角
杨辉三角 是经典算法,这篇博客对它的算法思想进行了讲解,并有完整的代码实现。
英特尔不为人知的 B 面
从 PC 时代至今,众人只知在 CPU、GPU、XPU、制程、工艺等战场中,英特尔在与同行硬件芯片制造商们的竞争中杀出重围,且在不断的成长进化中,成为全球知名的半导体公司。殊不知,在「刚硬」的背后,英特尔「柔性」的软件早已经做到了全方位的支持与支撑,并持续发挥独特的生态价值,推动产业合作共赢。 而对于这一不知人知的 B 面,很多人将其称之为英特尔隐形的翅膀,虽低调,但是影响力却不容小觑。 那么,在...
腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹?
昨天,有网友私信我,说去阿里面试,彻底的被打击到了。问了为什么网上大量使用ThreadLocal的源码都会加上private static?他被难住了,因为他从来都没有考虑过这个问题。无独有偶,今天笔者又发现有网友吐槽了一道腾讯的面试题,我们一起来看看。 腾讯算法面试题:64匹马8个跑道需要多少轮才能选出最快的四匹? 在互联网职场论坛,一名程序员发帖求助到。二面腾讯,其中一个算法题:64匹...
面试官:你连RESTful都不知道我怎么敢要你?
干货,2019 RESTful最贱实践
刷了几千道算法题,这些我私藏的刷题网站都在这里了!
遥想当年,机缘巧合入了 ACM 的坑,周边巨擘林立,从此过上了"天天被虐似死狗"的生活… 然而我是谁,我可是死狗中的战斗鸡,智力不够那刷题来凑,开始了夜以继日哼哧哼哧刷题的日子,从此"读题与提交齐飞, AC 与 WA 一色 ",我惊喜的发现被题虐既刺激又有快感,那一刻我泪流满面。这么好的事儿作为一个正直的人绝不能自己独享,经过激烈的颅内斗争,我决定把我私藏的十几个 T 的,阿不,十几个刷题网...
为啥国人偏爱Mybatis,而老外喜欢Hibernate/JPA呢?
关于SQL和ORM的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行了一番讨论,感触还是有一些,于是就有了今天这篇文。 声明:本文不会下关于Mybatis和JPA两个持久层框架哪个更好这样的结论。只是摆事实,讲道理,所以,请各位看官勿喷。 一、事件起因 关于Mybatis和JPA孰优孰劣的问题,争论已经很多年了。一直也没有结论,毕竟每个人的喜好和习惯是大不相同的。我也看...
白话阿里巴巴Java开发手册高级篇
不久前,阿里巴巴发布了《阿里巴巴Java开发手册》,总结了阿里巴巴内部实际项目开发过程中开发人员应该遵守的研发流程规范,这些流程规范在一定程度上能够保证最终的项目交付质量,通过在时间中总结模式,并推广给广大开发人员,来避免研发人员在实践中容易犯的错误,确保最终在大规模协作的项目中达成既定目标。 无独有偶,笔者去年在公司里负责升级和制定研发流程、设计模板、设计标准、代码标准等规范,并在实际工作中进行...
SQL-小白最佳入门sql查询一
不要偷偷的查询我的个人资料,即使你再喜欢我,也不要这样,真的不好;
项目中的if else太多了,该怎么重构?
介绍 最近跟着公司的大佬开发了一款IM系统,类似QQ和微信哈,就是聊天软件。我们有一部分业务逻辑是这样的 if (msgType = "文本") { // dosomething } else if(msgType = "图片") { // doshomething } else if(msgType = "视频") { // doshomething } else { // doshom...
Nginx 原理和架构
Nginx 是一个免费的,开源的,高性能的 HTTP 服务器和反向代理,以及 IMAP / POP3 代理服务器。Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名。 Nginx 的整体架构 Nginx 里有一个 master 进程和多个 worker 进程。master 进程并不处理网络请求,主要负责调度工作进程:加载配置、启动工作进程及非停升级。worker 进程负责处...
YouTube排名第一的励志英文演讲《Dream(梦想)》
Idon’t know what that dream is that you have, I don't care how disappointing it might have been as you've been working toward that dream,but that dream that you’re holding in your mind, that it’s po...
“狗屁不通文章生成器”登顶GitHub热榜,分分钟写出万字形式主义大作
一、垃圾文字生成器介绍 最近在浏览GitHub的时候,发现了这样一个骨骼清奇的雷人项目,而且热度还特别高。 项目中文名:狗屁不通文章生成器 项目英文名:BullshitGenerator 根据作者的介绍,他是偶尔需要一些中文文字用于GUI开发时测试文本渲染,因此开发了这个废话生成器。但由于生成的废话实在是太过富于哲理,所以最近已经被小伙伴们给玩坏了。 他的文风可能是这样的: 你发现,...
程序员:我终于知道post和get的区别
是一个老生常谈的话题,然而随着不断的学习,对于以前的认识有很多误区,所以还是需要不断地总结的,学而时习之,不亦说乎
相关热词 c# 二进制截断字符串 c#实现窗体设计器 c#检测是否为微信 c# plc s1200 c#里氏转换原则 c# 主界面 c# do loop c#存为组套 模板 c# 停掉协程 c# rgb 读取图片
立即提问