zhangzm0128
zhangzm0128
2017-04-19 10:13

faster rcnn训练的时候应该是哪个层出了问题

  • echo Logging output to experiments/logs/faster_rcnn_alt_opt_ZF_.txt.2017-04-19_01-16-47 Logging output to experiments/logs/faster_rcnn_alt_opt_ZF_.txt.2017-04-19_01-16-47
  • ./tools/train_faster_rcnn_alt_opt.py --gpu 0 --net_name ZF --weights data/imagenet_models/CaffeNet.v2.caffemodel --imdb voc_2007_trainval --cfg experiments/cfgs/faster_rcnn_alt_opt.yml
    Called with args:
    Namespace(cfg_file='experiments/cfgs/faster_rcnn_alt_opt.yml', gpu_id=0, imdb_name='voc_2007_trainval', net_name='ZF', pretrained_model='data/imagenet_models/CaffeNet.v2.caffemodel', set_cfgs=None)

    Stage 1 RPN, init from ImageNet model
    

    Init model: data/imagenet_models/CaffeNet.v2.caffemodel
    Using config:
    {'DATA_DIR': 'E:\caffe-frcnn\py-faster-rcnn-master\data',
    'DEDUP_BOXES': 0.0625,
    'EPS': 1e-14,
    'EXP_DIR': 'default',
    'GPU_ID': 0,
    'MATLAB': 'matlab',
    'MODELS_DIR': 'E:\caffe-frcnn\py-faster-rcnn-master\models\pascal_voc',
    'PIXEL_MEANS': array([[[ 102.9801, 115.9465, 122.7717]]]),
    'RNG_SEED': 3,
    'ROOT_DIR': 'E:\caffe-frcnn\py-faster-rcnn-master',
    'TEST': {'BBOX_REG': True,
    'HAS_RPN': False,
    'MAX_SIZE': 1000,
    'NMS': 0.3,
    'PROPOSAL_METHOD': 'selective_search',
    'RPN_MIN_SIZE': 16,
    'RPN_NMS_THRESH': 0.7,
    'RPN_POST_NMS_TOP_N': 300,
    'RPN_PRE_NMS_TOP_N': 6000,
    'SCALES': [600],
    'SVM': False},
    'TRAIN': {'ASPECT_GROUPING': True,
    'BATCH_SIZE': 128,
    'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
    'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
    'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
    'BBOX_NORMALIZE_TARGETS': True,
    'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': False,
    'BBOX_REG': False,
    'BBOX_THRESH': 0.5,
    'BG_THRESH_HI': 0.5,
    'BG_THRESH_LO': 0.1,
    'FG_FRACTION': 0.25,
    'FG_THRESH': 0.5,
    'HAS_RPN': True,
    'IMS_PER_BATCH': 1,
    'MAX_SIZE': 1000,
    'PROPOSAL_METHOD': 'gt',
    'RPN_BATCHSIZE': 256,
    'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
    'RPN_CLOBBER_POSITIVES': False,
    'RPN_FG_FRACTION': 0.5,
    'RPN_MIN_SIZE': 16,
    'RPN_NEGATIVE_OVERLAP': 0.3,
    'RPN_NMS_THRESH': 0.7,
    'RPN_POSITIVE_OVERLAP': 0.7,
    'RPN_POSITIVE_WEIGHT': -1.0,
    'RPN_POST_NMS_TOP_N': 2000,
    'RPN_PRE_NMS_TOP_N': 12000,
    'SCALES': [600],
    'SNAPSHOT_INFIX': '',
    'SNAPSHOT_ITERS': 10000,
    'USE_FLIPPED': True,
    'USE_PREFETCH': False},
    'USE_GPU_NMS': True}
    Loaded dataset voc_2007_trainval for training
    Set proposal method: gt
    Appending horizontally-flipped training examples...
    voc_2007_trainval gt roidb loaded from E:\caffe-frcnn\py-faster-rcnn-master\data\cache\voc_2007_trainval_gt_roidb.pkl
    done
    Preparing training data...
    done
    roidb len: 100
    Output will be saved to E:\caffe-frcnn\py-faster-rcnn-master\output\default\voc_2007_trainval
    Filtered 0 roidb entries: 100 -> 100
    WARNING: Logging before InitGoogleLogging() is written to STDERR
    I0419 01:16:54.964942 25240 common.cpp:36] System entropy source not available, using fallback algorithm to generate seed instead.
    I0419 01:16:55.073168 25240 solver.cpp:44] Initializing solver from parameters:
    train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt"
    base_lr: 0.001
    display: 20
    lr_policy: "step"
    gamma: 0.1
    momentum: 0.9
    weight_decay: 0.0005
    stepsize: 60000
    snapshot: 0
    snapshot_prefix: "zf_rpn"
    average_loss: 100
    I0419 01:16:55.073168 25240 solver.cpp:77] Creating training net from train_net file: models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt
    I0419 01:16:55.074168 25240 net.cpp:51] Initializing net from parameters:
    name: "ZF"
    state {
    phase: TRAIN
    }
    layer {
    name: "input-data"
    type: "Python"
    top: "data"
    top: "im_info"
    top: "gt_boxes"
    python_param {
    module: "roi_data_layer.layer"
    layer: "RoIDataLayer"
    param_str: "\'num_classes\': 2"
    }
    }
    layer {
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 96
    pad: 3
    kernel_size: 7
    stride: 2
    }
    }
    layer {
    name: "relu1"
    type: "ReLU"
    bottom: "conv1"
    top: "conv1"
    }
    layer {
    name: "norm1"
    type: "LRN"
    bottom: "conv1"
    top: "norm1"
    lrn_param {
    local_size: 3
    alpha: 5e-05
    beta: 0.75
    norm_region: WITHIN_CHANNEL
    engine: CAFFE
    }
    }
    layer {
    name: "pool1"
    type: "Pooling"
    bottom: "norm1"
    top: "pool1"
    pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
    pad: 1
    }
    }
    layer {
    name: "conv2"
    type: "Convolution"
    bottom: "pool1"
    top: "conv2"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    stride: 2
    }
    }
    layer {
    name: "relu2"
    type: "ReLU"
    bottom: "conv2"
    top: "conv2"
    }
    layer {
    name: "norm2"
    type: "LRN"
    bottom: "conv2"
    top: "norm2"
    lrn_param {
    local_size: 3
    alpha: 5e-05
    beta: 0.75
    norm_region: WITHIN_CHANNEL
    engine: CAFFE
    }
    }
    layer {
    name: "pool2"
    type: "Pooling"
    bottom: "norm2"
    top: "pool2"
    pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
    pad: 1
    }
    }
    layer {
    name: "conv3"
    type: "Convolution"
    bottom: "pool2"
    top: "conv3"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    stride: 1
    }
    }
    layer {
    name: "relu3"
    type: "ReLU"
    bottom: "conv3"
    top: "conv3"
    }
    layer {
    name: "conv4"
    type: "Convolution"
    bottom: "conv3"
    top: "conv4"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    stride: 1
    }
    }
    layer {
    name: "relu4"
    type: "ReLU"
    bottom: "conv4"
    top: "conv4"
    }
    layer {
    name: "conv5"
    type: "Convolution"
    bottom: "conv4"
    top: "conv5"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
    }
    }
    layer {
    name: "relu5"
    type: "ReLU"
    bottom: "conv5"
    top: "conv5"
    }
    layer {
    name: "rpn_conv1"
    type: "Convolution"
    bottom: "conv5"
    top: "rpn_conv1"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    value: 0
    }
    }
    }
    layer {
    name: "rpn_relu1"
    type: "ReLU"
    bottom: "rpn_conv1"
    top: "rpn_conv1"
    }
    layer {
    name: "rpn_cls_score"
    type: "Convolution"
    bottom: "rpn_conv1"
    top: "rpn_cls_score"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 18
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    value: 0
    }
    }
    }
    layer {
    name: "rpn_bbox_pred"
    type: "Convolution"
    bottom: "rpn_conv1"RoiDataLayer: name_to_top: {'gt_boxes': 2, 'data': 0, 'im_info': 1}

    top: "rpn_bbox_pred"
    param {
    lr_mult: 1
    }
    param {
    lr_mult: 2
    }
    convolution_param {
    num_output: 36
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    value: 0
    }
    }
    }
    layer {
    name: "rpn_cls_score_reshape"
    type: "Reshape"
    bottom: "rpn_cls_score"
    top: "rpn_cls_score_reshape"
    reshape_param {
    shape {
    dim: 0
    dim: 2
    dim: -1
    dim: 0
    }
    }
    }
    layer {
    name: "rpn-data"
    type: "Python"
    bottom: "rpn_cls_score"
    bottom: "gt_boxes"
    bottom: "im_info"
    bottom: "data"
    top: "rpn_labels"
    top: "rpn_bbox_targets"
    top: "rpn_bbox_inside_weights"
    top: "rpn_bbox_outside_weights"
    python_param {
    module: "rpn.anchor_target_layer"
    layer: "AnchorTargetLayer"
    param_str: "\'feat_stride\': 16"
    }
    }
    layer {
    name: "rpn_loss_cls"
    type: "SoftmaxWithLoss"
    bottom: "rpn_cls_score_reshape"
    bottom: "rpn_labels"
    top: "rpn_cls_loss"
    loss_weight: 1
    propagate_down: true
    propagate_down: false
    loss_param {
    ignore_label: -1
    normalize: true
    }
    }
    layer {
    name: "rpn_loss_bbox"
    type: "SmoothL1Loss"
    bottom: "rpn_bbox_pred"
    bottom: "rpn_bbox_targets"
    bottom: "rpn_bbox_inside_weights"
    bottom: "rpn_bbox_outside_weights"
    top: "rpn_loss_bbox"
    loss_weight: 1
    smooth_l1_loss_param {
    sigma: 3
    }
    }
    layer {
    name: "dummy_roi_pool_conv5"
    type: "DummyData"
    top: "dummy_roi_pool_conv5"
    dummy_data_param {
    data_filler {
    type: "gaussian"
    std: 0.01
    }
    shape {
    dim: 1
    dim: 9216
    }
    }
    }
    layer {
    name: "fc6"
    type: "InnerProduct"
    bottom: "dummy_roi_pool_conv5"
    top: "fc6"
    param {
    lr_mult: 0
    decay_mult: 0
    }
    param {
    lr_mult: 0
    decay_mult: 0
    }
    inner_product_param {
    num_output: 4096
    }
    }
    layer {
    name: "relu6"
    type: "ReLU"
    bottom: "fc6"
    top: "fc6"
    }
    layer {
    name: "fc7"
    type: "InnerProduct"
    bottom: "fc6"
    top: "fc7"
    param {
    lr_mult: 0
    decay_mult: 0
    }
    param {
    lr_mult: 0
    decay_mult: 0
    }
    inner_product_param {
    num_output: 4096
    }
    }
    layer {
    name: "silence_fc7"
    type: "Silence"
    bottom: "fc7"
    }
    I0419 01:16:55.074668 25240 layer_factory.cpp:58] Creating layer input-data
    I0419 01:16:55.109673 25240 net.cpp:84] Creating Layer input-data
    I0419 01:16:55.109673 25240 net.cpp:380] input-data -> data
    I0419 01:16:55.109673 25240 net.cpp:380] input-data -> im_info
    I0419 01:16:55.109673 25240 net.cpp:380] input-data -> gt_boxes
    I0419 01:16:55.111171 25240 net.cpp:122] Setting up input-data
    I0419 01:16:55.111171 25240 net.cpp:129] Top shape: 1 3 600 1000 (1800000)
    I0419 01:16:55.111171 25240 net.cpp:129] Top shape: 1 3 (3)
    I0419 01:16:55.111668 25240 net.cpp:129] Top shape: 1 4 (4)
    I0419 01:16:55.111668 25240 net.cpp:137] Memory required for data: 7200028
    I0419 01:16:55.111668 25240 layer_factory.cpp:58] Creating layer data_input-data_0_split
    I0419 01:16:55.111668 25240 net.cpp:84] Creating Layer data_input-data_0_split
    I0419 01:16:55.111668 25240 net.cpp:406] data_input-data_0_split <- data
    I0419 01:16:55.111668 25240 net.cpp:380] data_input-data_0_split -> data_input-data_0_split_0
    I0419 01:16:55.111668 25240 net.cpp:380] data_input-data_0_split -> data_input-data_0_split_1
    I0419 01:16:55.111668 25240 net.cpp:122] Setting up data_input-data_0_split
    I0419 01:16:55.111668 25240 net.cpp:129] Top shape: 1 3 600 1000 (1800000)
    I0419 01:16:55.111668 25240 net.cpp:129] Top shape: 1 3 600 1000 (1800000)
    I0419 01:16:55.111668 25240 net.cpp:137] Memory required for data: 21600028
    I0419 01:16:55.111668 25240 layer_factory.cpp:58] Creating layer conv1
    I0419 01:16:55.111668 25240 net.cpp:84] Creating Layer conv1
    I0419 01:16:55.111668 25240 net.cpp:406] conv1 <- data_input-data_0_split_0
    I0419 01:16:55.111668 25240 net.cpp:380] conv1 -> conv1
    I0419 01:16:55.577394 25240 net.cpp:122] Setting up conv1
    I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 300 500 (14400000)
    I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 79200028
    I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer relu1
    I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer relu1
    I0419 01:16:55.577394 25240 net.cpp:406] relu1 <- conv1
    I0419 01:16:55.577394 25240 net.cpp:367] relu1 -> conv1 (in-place)
    I0419 01:16:55.577394 25240 net.cpp:122] Setting up relu1
    I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 300 500 (14400000)
    I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 136800028
    I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer norm1
    I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer norm1
    I0419 01:16:55.577394 25240 net.cpp:406] norm1 <- conv1
    I0419 01:16:55.577394 25240 net.cpp:380] norm1 -> norm1
    I0419 01:16:55.577394 25240 net.cpp:122] Setting up norm1
    I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 300 500 (14400000)
    I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 194400028
    I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer pool1
    I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer pool1
    I0419 01:16:55.577394 25240 net.cpp:406] pool1 <- norm1
    I0419 01:16:55.577394 25240 net.cpp:380] pool1 -> pool1
    I0419 01:16:55.577394 25240 net.cpp:122] Setting up pool1
    I0419 01:16:55.577394 25240 net.cpp:129] Top shape: 1 96 151 251 (3638496)
    I0419 01:16:55.577394 25240 net.cpp:137] Memory required for data: 208954012
    I0419 01:16:55.577394 25240 layer_factory.cpp:58] Creating layer conv2
    I0419 01:16:55.577394 25240 net.cpp:84] Creating Layer conv2
    I0419 01:16:55.577394 25240 net.cpp:406] conv2 <- pool1
    I0419 01:16:55.577394 25240 net.cpp:380] conv2 -> conv2
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up conv2
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 76 126 (2451456)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 218759836
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer relu2
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer relu2
    I0419 01:16:55.593016 25240 net.cpp:406] relu2 <- conv2
    I0419 01:16:55.593016 25240 net.cpp:367] relu2 -> conv2 (in-place)
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up relu2
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 76 126 (2451456)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 228565660
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer norm2
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer norm2
    I0419 01:16:55.593016 25240 net.cpp:406] norm2 <- conv2
    I0419 01:16:55.593016 25240 net.cpp:380] norm2 -> norm2
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up norm2
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 76 126 (2451456)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 238371484
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer pool2
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer pool2
    I0419 01:16:55.593016 25240 net.cpp:406] pool2 <- norm2
    I0419 01:16:55.593016 25240 net.cpp:380] pool2 -> pool2
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up pool2
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 240927388
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer conv3
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer conv3
    I0419 01:16:55.593016 25240 net.cpp:406] conv3 <- pool2
    I0419 01:16:55.593016 25240 net.cpp:380] conv3 -> conv3
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up conv3
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 244761244
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer relu3
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer relu3
    I0419 01:16:55.593016 25240 net.cpp:406] relu3 <- conv3
    I0419 01:16:55.593016 25240 net.cpp:367] relu3 -> conv3 (in-place)
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up relu3
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 248595100
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer conv4
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer conv4
    I0419 01:16:55.593016 25240 net.cpp:406] conv4 <- conv3
    I0419 01:16:55.593016 25240 net.cpp:380] conv4 -> conv4
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up conv4
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 252428956
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer relu4
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer relu4
    I0419 01:16:55.593016 25240 net.cpp:406] relu4 <- conv4
    I0419 01:16:55.593016 25240 net.cpp:367] relu4 -> conv4 (in-place)
    I0419 01:16:55.593016 25240 net.cpp:122] Setting up relu4
    I0419 01:16:55.593016 25240 net.cpp:129] Top shape: 1 384 39 64 (958464)
    I0419 01:16:55.593016 25240 net.cpp:137] Memory required for data: 256262812
    I0419 01:16:55.593016 25240 layer_factory.cpp:58] Creating layer conv5
    I0419 01:16:55.593016 25240 net.cpp:84] Creating Layer conv5
    I0419 01:16:55.593016 25240 net.cpp:406] conv5 <- conv4
    I0419 01:16:55.593016 25240 net.cpp:380] conv5 -> conv5
    I0419 01:16:55.608644 25240 net.cpp:122] Setting up conv5
    I0419 01:16:55.608644 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.608644 25240 net.cpp:137] Memory required for data: 258818716
    I0419 01:16:55.608644 25240 layer_factory.cpp:58] Creating layer relu5
    I0419 01:16:55.608644 25240 net.cpp:84] Creating Layer relu5
    I0419 01:16:55.608644 25240 net.cpp:406] relu5 <- conv5
    I0419 01:16:55.608644 25240 net.cpp:367] relu5 -> conv5 (in-place)
    I0419 01:16:55.608644 25240 net.cpp:122] Setting up relu5
    I0419 01:16:55.608644 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.608644 25240 net.cpp:137] Memory required for data: 261374620
    I0419 01:16:55.608644 25240 layer_factory.cpp:58] Creating layer rpn_conv1
    I0419 01:16:55.608644 25240 net.cpp:84] Creating Layer rpn_conv1
    I0419 01:16:55.608644 25240 net.cpp:406] rpn_conv1 <- conv5
    I0419 01:16:55.608644 25240 net.cpp:380] rpn_conv1 -> rpn_conv1
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_conv1
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 263930524
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_relu1
    I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_relu1
    I0419 01:16:55.624267 25240 net.cpp:406] rpn_relu1 <- rpn_conv1
    I0419 01:16:55.624267 25240 net.cpp:367] rpn_relu1 -> rpn_conv1 (in-place)
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_relu1
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 266486428
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_conv1_rpn_relu1_0_split
    I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_conv1_rpn_relu1_0_split
    I0419 01:16:55.624267 25240 net.cpp:406] rpn_conv1_rpn_relu1_0_split <- rpn_conv1
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_conv1_rpn_relu1_0_split -> rpn_conv1_rpn_relu1_0_split_0
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_conv1_rpn_relu1_0_split -> rpn_conv1_rpn_relu1_0_split_1
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_conv1_rpn_relu1_0_split
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 256 39 64 (638976)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 271598236
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_cls_score
    I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_cls_score
    I0419 01:16:55.624267 25240 net.cpp:406] rpn_cls_score <- rpn_conv1_rpn_relu1_0_split_0
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score -> rpn_cls_score
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_cls_score
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 18 39 64 (44928)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 271777948
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_cls_score_rpn_cls_score_0_split
    I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_cls_score_rpn_cls_score_0_split
    I0419 01:16:55.624267 25240 net.cpp:406] rpn_cls_score_rpn_cls_score_0_split <- rpn_cls_score
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score_rpn_cls_score_0_split -> rpn_cls_score_rpn_cls_score_0_split_0
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score_rpn_cls_score_0_split -> rpn_cls_score_rpn_cls_score_0_split_1
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_cls_score_rpn_cls_score_0_split
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 18 39 64 (44928)
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 18 39 64 (44928)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 272137372
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_bbox_pred
    I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_bbox_pred
    I0419 01:16:55.624267 25240 net.cpp:406] rpn_bbox_pred <- rpn_conv1_rpn_relu1_0_split_1
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_bbox_pred -> rpn_bbox_pred
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_bbox_pred
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 36 39 64 (89856)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 272496796
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn_cls_score_reshape
    I0419 01:16:55.624267 25240 net.cpp:84] Creating Layer rpn_cls_score_reshape
    I0419 01:16:55.624267 25240 net.cpp:406] rpn_cls_score_reshape <- rpn_cls_score_rpn_cls_score_0_split_0
    I0419 01:16:55.624267 25240 net.cpp:380] rpn_cls_score_reshape -> rpn_cls_score_reshape
    I0419 01:16:55.624267 25240 net.cpp:122] Setting up rpn_cls_score_reshape
    I0419 01:16:55.624267 25240 net.cpp:129] Top shape: 1 2 351 64 (44928)
    I0419 01:16:55.624267 25240 net.cpp:137] Memory required for data: 272676508
    I0419 01:16:55.624267 25240 layer_factory.cpp:58] Creating layer rpn-data
    I0419 01:16:55.639891 25240 net.cpp:84] Creating Layer rpn-data
    I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- rpn_cls_score_rpn_cls_score_0_split_1
    I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- gt_boxes
    I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- im_info
    I0419 01:16:55.639891 25240 net.cpp:406] rpn-data <- data_input-data_0_split_1
    I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_labels
    I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_bbox_targets
    I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_bbox_inside_weights
    I0419 01:16:55.639891 25240 net.cpp:380] rpn-data -> rpn_bbox_outside_weights
    I0419 01:16:55.639891 25240 net.cpp:122] Setting up rpn-data
    I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 1 351 64 (22464)
    I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 36 39 64 (89856)
    I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 36 39 64 (89856)
    I0419 01:16:55.639891 25240 net.cpp:129] Top shape: 1 36 39 64 (89856)
    I0419 01:16:55.639891 25240 net.cpp:137] Memory required for data: 273844636
    I0419 01:16:55.639891 25240 layer_factory.cpp:58] Creating layer rpn_loss_cls
    I0419 01:16:55.639891 25240 net.cpp:84] Creating Layer rpn_loss_cls
    I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_cls <- rpn_cls_score_reshape
    I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_cls <- rpn_labels
    I0419 01:16:55.639891 25240 net.cpp:380] rpn_loss_cls -> rpn_cls_loss
    I0419 01:16:55.639891 25240 layer_factory.cpp:58] Creating layer rpn_loss_cls
    I0419 01:16:55.639891 25240 net.cpp:122] Setting up rpn_loss_cls
    I0419 01:16:55.639891 25240 net.cpp:129] Top shape: (1)
    I0419 01:16:55.639891 25240 net.cpp:132] with loss weight 1
    I0419 01:16:55.639891 25240 net.cpp:137] Memory required for data: 273844640
    I0419 01:16:55.639891 25240 layer_factory.cpp:58] Creating layer rpn_loss_bbox
    I0419 01:16:55.639891 25240 net.cpp:84] Creating Layer rpn_loss_bbox
    I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_bbox <- rpn_bbox_pred
    I0419 01:16:55.639891 25240 net.cpp:406] rpn_loss_bbox <- rpn_bbox_targets
    I0419 01:16:55.639891 2*** Check failure stack trace: ***

  • 点赞
  • 写回答
  • 关注问题
  • 收藏
  • 复制链接分享
  • 邀请回答