ayanamiprpr 2021-06-18 20:41 采纳率: 100%
浏览 1129
已采纳

keras 二分类预测结果几乎全是一个值

程序是用来对蜜蜂(bee)和黄蜂(wasp)分类的,用的模型是在vgg16上拼接的,代码如下

from keras.applications.vgg16 import VGG16
from keras.layers import Dense, Flatten, Activation, Dropout
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
import keras
import shutil
import os

def creatDataGenerator(train_dir, test_dir):
    train_data_generator = ImageDataGenerator(rescale=.1/255)
    test_data_generator = ImageDataGenerator(rescale=.1/255)

    train_generator = train_data_generator.flow_from_directory(train_dir,
                                                            target_size=(150,150),
                                                            batch_size=32,
                                                            class_mode='binary')
    test_generator = test_data_generator.flow_from_directory(test_dir,
                                                            target_size=(150,150),
                                                            batch_size=32,
                                                            class_mode='binary')
    return train_generator, test_generator

vgg_model = VGG16(weights='imagenet', include_top=False, input_shape=(150,150,3))

cla_model = Sequential()
cla_model.add(Flatten())
cla_model.add(Dense(512, activation='relu'))
cla_model.add(Dropout(0.5))
cla_model.add(Dense(1, activation='sigmoid'))

model = Sequential()
model.add(vgg_model)
model.add(cla_model)

model.compile(loss='binary_crossentropy', optimizer='RMSprop', metrics=['accuracy'])

train_generator, test_generator = creatDataGenerator(train_dir=r'C:\Users\ayana\.keras\datasets\bee-vs-wasp\train',
                                                    test_dir=r'C:\Users\ayana\.keras\datasets\bee-vs-wasp\test')
H = model.fit(train_generator,
              steps_per_epoch=50,
              epochs=30,
              validation_data=test_generator,
              validation_steps=50)

然后训练以后进行预测,选择的是黄蜂的10张图(蜜蜂预测出来也是同样的结果)

顺便训练的准确率也比较低,不到0.6,也一直不知道怎么能高一些

from keras.preprocessing.image import load_img, img_to_array
import numpy as np

def predict(i):
    img_path = os.listdir(r'C:\Users\ayana\.keras\datasets\bee-vs-wasp\test\wasp')[i]
    img = load_img(path='C:\\Users\\ayana\\.keras\\datasets\\bee-vs-wasp\\test\\wasp\\'+img_path, 
                    target_size=(150,150))
    img = np.expand_dims(img, axis=0)/255
    prediction = model.predict(img)
    return prediction

for i in range(10):
    print(predict(i))

#>>>[[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]
#    [[0.4714901]]

再用np.argmax()的话就都是0了

被困了一天了,#求救

  • 写回答

2条回答 默认 最新

  • 兰振lanzhen 2021-06-18 22:55
    关注

    应该是这个吧,你训练之后得到的模型是H,prediction = H.predict(img)  

    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

悬赏问题

  • ¥15 如何让企业微信机器人实现消息汇总整合
  • ¥50 关于#ui#的问题:做yolov8的ui界面出现的问题
  • ¥15 如何用Python爬取各高校教师公开的教育和工作经历
  • ¥15 TLE9879QXA40 电机驱动
  • ¥20 对于工程问题的非线性数学模型进行线性化
  • ¥15 Mirare PLUS 进行密钥认证?(详解)
  • ¥15 物体双站RCS和其组成阵列后的双站RCS关系验证
  • ¥20 想用ollama做一个自己的AI数据库
  • ¥15 关于qualoth编辑及缝合服装领子的问题解决方案探寻
  • ¥15 请问怎么才能复现这样的图呀