打开tensorboard时出现错误:module 'tensorflow' has no attribute 'estimator'

在用cmd打开tensorboard时出现以下错误:AttributeError: module 'tensorflow' has no attribute 'estimator'请问是怎么回事?问题如下:
图片说明

尝试了多种方法都不管用,例如重新安装tensorflow,tensorboard。

2个回答

你的tensorFlow和tensorboard的版本不匹配,所以才会报错,可以尝试一下2.0.0版本的tensorboard加上1.14.0版本的tensorFlow

我也是相同问题,我的解决方法是将beholder.py中
类class BeholderHook(tf.estimator.SessionRunHook):的括号中内容删除,就没有报错了。
TF2 取消了SESSION,可以不用

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
tensorflow :AttributeError: module 'tensorflow' has no attribute 'placeholder'

![图片说明](https://img-ask.csdn.net/upload/201912/23/1577068222_34445.png) I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll Traceback (most recent call last): File "G:/pycharm/mycode-ZZQ/TensorflowDemo/demo1.py", line 7, in <module> a_ph = tf.placeholder(tf.float32, name='variable_a') AttributeError: module 'tensorflow' has no attribute 'placeholder' 大佬有知道怎么回事嘛,我卸载又安装还是不管用

tensorboard报错:'tensorflow.python.estimator.api.estimator' has no attribute 'SessionRunHook'

小白刚接触tensorflow,想用tensorboard将网络可视化,但在cmd输入tensorboard时报错:'tensorflow.python.estimator.api.estimator' has no attribute 'SessionRunHook' 装有: tensorflow1.14.0 tensorboard1.14.0 tensorflow-estimator1.14.0 ![cmd 输入tensorboard](https://img-ask.csdn.net/upload/201908/02/1564715663_532189.png) ![图片说明](https://img-ask.csdn.net/upload/201908/02/1564715700_90147.png) ![图片说明](https://img-ask.csdn.net/upload/201908/02/1564715717_408990.png) ![图片说明](https://img-ask.csdn.net/upload/201908/02/1564715758_842574.png)

【Tensorflow2.0】Tensorflow2.0版本可以使用object_dectectionAPI吗

我电脑上安装的是tensorflow2.0版本,在配置object-dectection API时出现了AttributeError: module 'tensorflow' has no attribute 'contrib'的问题,请懂的老师帮忙解答一下,十分感谢

求问大佬装TensorFlow出现这样的情况是怎么办呀

(TF2.1) C:\Users\lenovo>pip install tensorflow==2.1 Requirement already satisfied: tensorflow==2.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (2.1.0) Requirement already satisfied: termcolor>=1.1.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.1.0) Requirement already satisfied: protobuf>=3.8.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (3.11.3) Requirement already satisfied: absl-py>=0.7.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.9.0) Requirement already satisfied: opt-einsum>=2.3.2 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (3.2.1) Requirement already satisfied: google-pasta>=0.1.6 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.2.0) Requirement already satisfied: wheel>=0.26; python_version >= "3" in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.34.2) Requirement already satisfied: wrapt>=1.11.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.12.1) Requirement already satisfied: gast==0.2.2 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.2.2) Requirement already satisfied: six>=1.12.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.14.0) Requirement already satisfied: numpy<2.0,>=1.16.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.18.4) Requirement already satisfied: tensorboard<2.2.0,>=2.1.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (2.1.1) Requirement already satisfied: tensorflow-estimator<2.2.0,>=2.1.0rc0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (2.1.0) Requirement already satisfied: grpcio>=1.8.6 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.28.1) Requirement already satisfied: astor>=0.6.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.8.1) Requirement already satisfied: scipy==1.4.1; python_version >= "3" in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.4.1) Requirement already satisfied: keras-applications>=1.0.8 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.0.8) Requirement already satisfied: keras-preprocessing>=1.1.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.1.0) Requirement already satisfied: setuptools in f:\anaconda3\envs\tf2.1\lib\site-packages (from protobuf>=3.8.0->tensorflow==2.1) (46.1.3.post20200330) Requirement already satisfied: markdown>=2.6.8 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (3.2.1) Requirement already satisfied: google-auth<2,>=1.6.3 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.14.1) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (0.4.1) Requirement already satisfied: werkzeug>=0.11.15 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.0.1) Requirement already satisfied: requests<3,>=2.21.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (2.23.0) Requirement already satisfied: h5py in f:\anaconda3\envs\tf2.1\lib\site-packages (from keras-applications>=1.0.8->tensorflow==2.1) (2.10.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (0.2.8) Requirement already satisfied: rsa<4.1,>=3.1.4 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (4.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (4.1.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.3.0) Requirement already satisfied: chardet<4,>=3.0.2 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (2.9) Requirement already satisfied: certifi>=2017.4.17 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (2020.4.5.1) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.25.9) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in f:\anaconda3\envs\tf2.1\lib\site-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (0.4.8) Requirement already satisfied: oauthlib>=3.0.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (3.1.0) (TF2.1) C:\Users\lenovo>python Python 3.7.7 (default, Apr 15 2020, 05:09:04) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf Traceback (most recent call last): File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow\__init__.py", line 101, in <module> from tensorflow_core import * File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\__init__.py", line 40, in <module> from tensorflow.python.tools import module_util as _module_util File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow\__init__.py", line 50, in __getattr__ module = self._load() File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow\__init__.py", line 44, in _load module = _importlib.import_module(self.__name__) File "F:\anaconda3\envs\TF2.1\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.

使用tensorboard时报错且scalar不显示

rt 报错信息如下: ``` Exception in thread Reloader: Traceback (most recent call last): File "C:\Anaconda3\lib\threading.py", line 914, in _bootstrap_inner self.run() File "C:\Anaconda3\lib\threading.py", line 862, in run self._target(*self._args, **self._kwargs) File "C:\Anaconda3\lib\site-packages\tensorboard\backend\application.py", line 371, in _reload reload_multiplexer(multiplexer, path_to_run) File "C:\Anaconda3\lib\site-packages\tensorboard\backend\application.py", line 338, in reload_multiplexer multiplexer.Reload() File "C:\Anaconda3\lib\site-packages\tensorboard\backend\event_processing\plugin_event_multiplexer.py", line 238, in Reload Worker() File "C:\Anaconda3\lib\site-packages\tensorboard\backend\event_processing\plugin_event_multiplexer.py", line 216, in Worker accumulator.Reload() File "C:\Anaconda3\lib\site-packages\tensorboard\backend\event_processing\plugin_event_accumulator.py", line 170, in Reload self._ProcessEvent(event) File "C:\Anaconda3\lib\site-packages\tensorboard\backend\event_processing\plugin_event_accumulator.py", line 318, in _ProcessEvent value = data_compat.migrate_value(value) File "C:\Anaconda3\lib\site-packages\tensorboard\data_compat.py", line 57, in migrate_value return handler(value) if handler else value File "C:\Anaconda3\lib\site-packages\tensorboard\data_compat.py", line 106, in _migrate_scalar_value tensor_proto = tf.make_tensor_proto(scalar_value) AttributeError: module 'tensorflow' has no attribute 'make_tensor_proto' TensorBoard 1.10.0 at http://0.0.0.0:6006 (Press CTRL+C to quit) ```

装TensorFlow出现了这些问题是什么情况呀

(TF2.1) C:\Users\lenovo>pip install tensorflow==2.1 Requirement already satisfied: tensorflow==2.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (2.1.0) Requirement already satisfied: termcolor>=1.1.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.1.0) Requirement already satisfied: protobuf>=3.8.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (3.11.3) Requirement already satisfied: absl-py>=0.7.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.9.0) Requirement already satisfied: opt-einsum>=2.3.2 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (3.2.1) Requirement already satisfied: google-pasta>=0.1.6 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.2.0) Requirement already satisfied: wheel>=0.26; python_version >= "3" in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.34.2) Requirement already satisfied: wrapt>=1.11.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.12.1) Requirement already satisfied: gast==0.2.2 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.2.2) Requirement already satisfied: six>=1.12.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.14.0) Requirement already satisfied: numpy<2.0,>=1.16.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.18.4) Requirement already satisfied: tensorboard<2.2.0,>=2.1.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (2.1.1) Requirement already satisfied: tensorflow-estimator<2.2.0,>=2.1.0rc0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (2.1.0) Requirement already satisfied: grpcio>=1.8.6 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.28.1) Requirement already satisfied: astor>=0.6.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (0.8.1) Requirement already satisfied: scipy==1.4.1; python_version >= "3" in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.4.1) Requirement already satisfied: keras-applications>=1.0.8 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.0.8) Requirement already satisfied: keras-preprocessing>=1.1.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorflow==2.1) (1.1.0) Requirement already satisfied: setuptools in f:\anaconda3\envs\tf2.1\lib\site-packages (from protobuf>=3.8.0->tensorflow==2.1) (46.1.3.post20200330) Requirement already satisfied: markdown>=2.6.8 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (3.2.1) Requirement already satisfied: google-auth<2,>=1.6.3 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.14.1) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (0.4.1) Requirement already satisfied: werkzeug>=0.11.15 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.0.1) Requirement already satisfied: requests<3,>=2.21.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (2.23.0) Requirement already satisfied: h5py in f:\anaconda3\envs\tf2.1\lib\site-packages (from keras-applications>=1.0.8->tensorflow==2.1) (2.10.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (0.2.8) Requirement already satisfied: rsa<4.1,>=3.1.4 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (4.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (4.1.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.3.0) Requirement already satisfied: chardet<4,>=3.0.2 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (2.9) Requirement already satisfied: certifi>=2017.4.17 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (2020.4.5.1) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (1.25.9) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in f:\anaconda3\envs\tf2.1\lib\site-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (0.4.8) Requirement already satisfied: oauthlib>=3.0.0 in f:\anaconda3\envs\tf2.1\lib\site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow==2.1) (3.1.0) (TF2.1) C:\Users\lenovo>python Python 3.7.7 (default, Apr 15 2020, 05:09:04) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf Traceback (most recent call last): File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow\__init__.py", line 101, in <module> from tensorflow_core import * File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\__init__.py", line 40, in <module> from tensorflow.python.tools import module_util as _module_util File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow\__init__.py", line 50, in __getattr__ module = self._load() File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow\__init__.py", line 44, in _load module = _importlib.import_module(self.__name__) File "F:\anaconda3\envs\TF2.1\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "F:\anaconda3\envs\TF2.1\lib\site-packages\tensorflow_core\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "F:\anaconda3\envs\TF2.1\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 找不到指定的模块。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.

安装 tensorflow cpu 版出问题, 求解决办法。 谢谢

安装 tensorflow cpu 版出问题, 求解决办法。 谢谢 Windows 10 64bits, anaconda-3.4.2(Python3.5.2), tensorflow version 1.11-0, 第一次运行时报错: ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败。 Environment parameter path: C:\Program Files\Microsoft MPI\Bin\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Windows\System32\OpenSSH\;C:\CUDA\bin64;C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;C:\Program Files\dotnet\;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v6.5\lib\x64;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v6.5\extras\CUPTI\libx64;C:\Program Files\Microsoft VS Code;C:\Program Files\Anaconda3;C:\Program Files\Anaconda3\Scripts;C:\Program Files\Anaconda3\Library\bin; MSVCP140.DLL在以下2个目录 C:\Program Files\Anaconda3 C:\Program Files\Anaconda3\Library\bin C:\Windows\system32>python Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> C:\Windows\system32>pip install tensorflow Collecting tensorflow Using cached https://files.pythonhosted.org/packages/af/5b/695e2e66feb27742a78f938d8369cc874b5fc7082193c3352c9db599af01/tensorflow-1.11.0-cp35-cp35m-win_amd64.whl Requirement already satisfied: grpcio>=1.8.6 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.16.0) Requirement already satisfied: astor>=0.6.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.7.1) Requirement already satisfied: numpy>=1.13.3 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.15.3) Requirement already satisfied: keras-applications>=1.0.5 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.0.6) Requirement already satisfied: absl-py>=0.1.6 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.6.1) Requirement already satisfied: six>=1.10.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.10.0) Requirement already satisfied: setuptools<=39.1.0 in c:\program files\anaconda3\lib\site-packages\setuptools-27.2.0-py3.5.egg (from tensorflow) (27.2.0) Requirement already satisfied: protobuf>=3.6.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (3.6.1) Requirement already satisfied: keras-preprocessing>=1.0.3 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.0.5) Requirement already satisfied: termcolor>=1.1.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.1.0) Requirement already satisfied: gast>=0.2.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.2.0) Requirement already satisfied: wheel>=0.26 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (0.29.0) Requirement already satisfied: tensorboard<1.12.0,>=1.11.0 in c:\program files\anaconda3\lib\site-packages (from tensorflow) (1.11.0) Requirement already satisfied: h5py in c:\program files\anaconda3\lib\site-packages (from keras-applications>=1.0.5->tensorflow) (2.6.0) Requirement already satisfied: markdown>=2.6.8 in c:\program files\anaconda3\lib\site-packages (from tensorboard<1.12.0,>=1.11.0->tensorflow) (3.0.1) Requirement already satisfied: werkzeug>=0.11.10 in c:\program files\anaconda3\lib\site-packages (from tensorboard<1.12.0,>=1.11.0->tensorflow) (0.11.11) Installing collected packages: tensorflow Successfully installed tensorflow-1.11.0 错误信息: --------------------------------------------------------------------------- ImportError Traceback (most recent call last) C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py in <module>() 57 ---> 58 from tensorflow.python.pywrap_tensorflow_internal import * 59 from tensorflow.python.pywrap_tensorflow_internal import __version__ C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py in <module>() 27 return _mod ---> 28 _pywrap_tensorflow_internal = swig_import_helper() 29 del swig_import_helper C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py in swig_import_helper() 23 try: ---> 24 _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) 25 finally: C:\Program Files\Anaconda3\lib\imp.py in load_module(name, file, filename, details) 241 else: --> 242 return load_dynamic(name, filename, file) 243 elif type_ == PKG_DIRECTORY: C:\Program Files\Anaconda3\lib\imp.py in load_dynamic(name, path, file) 341 name=name, loader=loader, origin=path) --> 342 return _load(spec) 343 ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败。 During handling of the above exception, another exception occurred: ImportError Traceback (most recent call last) <ipython-input-1-41389fad42b5> in <module>() ----> 1 import tensorflow as tf C:\Program Files\Anaconda3\lib\site-packages\tensorflow\__init__.py in <module>() 20 21 # pylint: disable=g-bad-import-order ---> 22 from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import 23 24 try: C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\__init__.py in <module>() 47 import numpy as np 48 ---> 49 from tensorflow.python import pywrap_tensorflow 50 51 # Protocol buffers C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py in <module>() 72 for some common reasons and solutions. Include the entire stack trace 73 above this error message when asking for help.""" % traceback.format_exc() ---> 74 raise ImportError(msg) 75 76 # pylint: enable=wildcard-import,g-import-not-at-top,unused-import,line-too-long ImportError: Traceback (most recent call last): File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "C:\Program Files\Anaconda3\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "C:\Program Files\Anaconda3\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: 动态链接库(DLL)初始化例程失败。 Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/install_sources#common_installation_problems for some common reasons and solutions. Include the entire stack trace above this error message when asking for help.

PyTorch-YOLOv3 训练报错 如何解决?

报错信息 C:/w/1/s/windows/pytorch/aten/src\ATen/native/IndexingUtils.h:20: UserWarning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead. Traceback (most recent call last): File "train.py", line 141, in <module> logger.list_of_scalars_summary(tensorboard_log, batches_done) File "F:\StuPy\PyTorch-YOLOv3\utils\logger.py", line 17, in list_of_scalars_summary summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value) for tag, value in tag_value_pairs]) AttributeError: module 'tensorflow' has no attribute 'Summary' 已经安装插件版本 tensorboard 2.0.0 tensorflow 2.0.0 tensorflow-estimator 2.0.1 termcolor 1.1.0 terminaltables 3.1.0 torch 1.3.1 torchvision 0.4.1 tqdm 4.41.1 urllib3 1.25.7 Werkzeug 0.16.0 wheel 0.33.6 wrapt 1.11.2

tf.Summary()报错,是咋回事?

faster R-cnn中自定义tensorboard部分的代码报错,代码如下 ``` def write_log(callback, names, logs, batch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, batch_no) callback.writer.flush() ``` 报错如下: ``` AttributeError: module 'tensorflow' has no attribute 'Summary' ``` 之前运行都ok,突然报这么一个错,没找到解决办法,求路过大神帮忙看看

anaconda安装tensorflow的Error

anaconda安装成功后,创建了python3.5环境,创建了tensorflow2.1,之后import 不成功,再之后,anaconda navigator不见了,想问问是为什么(之前在开始菜单里存在,并且能打开;之后它在开始菜单里消失了!)

如何可视化tensorflow版的fater rcnn的训练过程?

小白一枚,github下的faster rcnn tf版在win10系统上,代码里没有输出训练日志的语句无log文件, 想问一下怎么添加语句可以通过tensorboard显示?下为train代码 import time import tensorflow as tf import numpy as np from tensorflow.python import pywrap_tensorflow import lib.config.config as cfg from lib.datasets import roidb as rdl_roidb from lib.datasets.factory import get_imdb from lib.datasets.imdb import imdb as imdb2 from lib.layer_utils.roi_data_layer import RoIDataLayer from lib.nets.vgg16 import vgg16 from lib.utils.timer import Timer try: import cPickle as pickle except ImportError: import pickle import os def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if True: print('Appending horizontally-flipped training examples...') imdb.append_flipped_images() print('done') print('Preparing training data...') rdl_roidb.prepare_roidb(imdb) print('done') return imdb.roidb def combined_roidb(imdb_names): """ Combine multiple roidbs """ def get_roidb(imdb_name): imdb = get_imdb(imdb_name) print('Loaded dataset `{:s}` for training'.format(imdb.name)) imdb.set_proposal_method("gt") print('Set proposal method: {:s}'.format("gt")) roidb = get_training_roidb(imdb) return roidb roidbs = [get_roidb(s) for s in imdb_names.split('+')] roidb = roidbs[0] if len(roidbs) > 1: for r in roidbs[1:]: roidb.extend(r) tmp = get_imdb(imdb_names.split('+')[1]) imdb = imdb2(imdb_names, tmp.classes) else: imdb = get_imdb(imdb_names) return imdb, roidb class Train: def __init__(self): # Create network if cfg.FLAGS.net == 'vgg16': self.net = vgg16(batch_size=cfg.FLAGS.ims_per_batch) else: raise NotImplementedError self.imdb, self.roidb = combined_roidb("voc_2007_trainval") self.data_layer = RoIDataLayer(self.roidb, self.imdb.num_classes) self.output_dir = cfg.get_output_dir(self.imdb, 'default') def train(self): # Create session tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True sess = tf.Session(config=tfconfig) with sess.graph.as_default(): tf.set_random_seed(cfg.FLAGS.rng_seed) layers = self.net.create_architecture(sess, "TRAIN", self.imdb.num_classes, tag='default') loss = layers['total_loss'] lr = tf.Variable(cfg.FLAGS.learning_rate, trainable=False) momentum = cfg.FLAGS.momentum optimizer = tf.train.MomentumOptimizer(lr, momentum) gvs = optimizer.compute_gradients(loss) # Double bias # Double the gradient of the bias if set if cfg.FLAGS.double_bias: final_gvs = [] with tf.variable_scope('Gradient_Mult'): for grad, var in gvs: scale = 1. if cfg.FLAGS.double_bias and '/biases:' in var.name: scale *= 2. if not np.allclose(scale, 1.0): grad = tf.multiply(grad, scale) final_gvs.append((grad, var)) train_op = optimizer.apply_gradients(final_gvs) else: train_op = optimizer.apply_gradients(gvs) # We will handle the snapshots ourselves self.saver = tf.train.Saver(max_to_keep=100000) # Write the train and validation information to tensorboard # writer = tf.summary.FileWriter(self.tbdir, sess.graph) # valwriter = tf.summary.FileWriter(self.tbvaldir) # Load weights # Fresh train directly from ImageNet weights print('Loading initial model weights from {:s}'.format(cfg.FLAGS.pretrained_model)) variables = tf.global_variables() # Initialize all variables first sess.run(tf.variables_initializer(variables, name='init')) var_keep_dic = self.get_variables_in_checkpoint_file(cfg.FLAGS.pretrained_model) # Get the variables to restore, ignorizing the variables to fix variables_to_restore = self.net.get_variables_to_restore(variables, var_keep_dic) restorer = tf.train.Saver(variables_to_restore) restorer.restore(sess, cfg.FLAGS.pretrained_model) print('Loaded.') # Need to fix the variables before loading, so that the RGB weights are changed to BGR # For VGG16 it also changes the convolutional weights fc6 and fc7 to # fully connected weights self.net.fix_variables(sess, cfg.FLAGS.pretrained_model) print('Fixed.') sess.run(tf.assign(lr, cfg.FLAGS.learning_rate)) last_snapshot_iter = 0 timer = Timer() iter = last_snapshot_iter + 1 last_summary_time = time.time() while iter < cfg.FLAGS.max_iters + 1: # Learning rate if iter == cfg.FLAGS.step_size + 1: # Add snapshot here before reducing the learning rate # self.snapshot(sess, iter) sess.run(tf.assign(lr, cfg.FLAGS.learning_rate * cfg.FLAGS.gamma)) timer.tic() # Get training data, one batch at a time blobs = self.data_layer.forward() # Compute the graph without summary rpn_loss_cls, rpn_loss_box, loss_cls, loss_box, total_loss = self.net.train_step(sess, blobs, train_op) timer.toc() iter += 1 # Display training information if iter % (cfg.FLAGS.display) == 0: print('iter: %d / %d, total loss: %.6f\n >>> rpn_loss_cls: %.6f\n ' '>>> rpn_loss_box: %.6f\n >>> loss_cls: %.6f\n >>> loss_box: %.6f\n ' % \ (iter, cfg.FLAGS.max_iters, total_loss, rpn_loss_cls, rpn_loss_box, loss_cls, loss_box)) print('speed: {:.3f}s / iter'.format(timer.average_time)) if iter % cfg.FLAGS.snapshot_iterations == 0: self.snapshot(sess, iter ) def get_variables_in_checkpoint_file(self, file_name): try: reader = pywrap_tensorflow.NewCheckpointReader(file_name) var_to_shape_map = reader.get_variable_to_shape_map() return var_to_shape_map except Exception as e: # pylint: disable=broad-except print(str(e)) if "corrupted compressed block contents" in str(e): print("It's likely that your checkpoint file has been compressed " "with SNAPPY.") def snapshot(self, sess, iter): net = self.net if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # Store the model snapshot filename = 'vgg16_faster_rcnn_iter_{:d}'.format(iter) + '.ckpt' filename = os.path.join(self.output_dir, filename) self.saver.save(sess, filename) print('Wrote snapshot to: {:s}'.format(filename)) # Also store some meta information, random state, etc. nfilename = 'vgg16_faster_rcnn_iter_{:d}'.format(iter) + '.pkl' nfilename = os.path.join(self.output_dir, nfilename) # current state of numpy random st0 = np.random.get_state() # current position in the database cur = self.data_layer._cur # current shuffled indeces of the database perm = self.data_layer._perm # Dump the meta info with open(nfilename, 'wb') as fid: pickle.dump(st0, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(cur, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(perm, fid, pickle.HIGHEST_PROTOCOL) pickle.dump(iter, fid, pickle.HIGHEST_PROTOCOL) return filename, nfilename if __name__ == '__main__': train = Train() train.train()

大学四年自学走来,这些私藏的实用工具/学习网站我贡献出来了

大学四年,看课本是不可能一直看课本的了,对于学习,特别是自学,善于搜索网上的一些资源来辅助,还是非常有必要的,下面我就把这几年私藏的各种资源,网站贡献出来给你们。主要有:电子书搜索、实用工具、在线视频学习网站、非视频学习网站、软件下载、面试/求职必备网站。 注意:文中提到的所有资源,文末我都给你整理好了,你们只管拿去,如果觉得不错,转发、分享就是最大的支持了。 一、电子书搜索 对于大部分程序员...

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

Java基础知识面试题(2020最新版)

文章目录Java概述何为编程什么是Javajdk1.5之后的三大版本JVM、JRE和JDK的关系什么是跨平台性?原理是什么Java语言有哪些特点什么是字节码?采用字节码的最大好处是什么什么是Java程序的主类?应用程序和小程序的主类有何不同?Java应用程序与小程序之间有那些差别?Java和C++的区别Oracle JDK 和 OpenJDK 的对比基础语法数据类型Java有哪些数据类型switc...

我以为我学懂了数据结构,直到看了这个导图才发现,我错了

数据结构与算法思维导图

String s = new String(" a ") 到底产生几个对象?

老生常谈的一个梗,到2020了还在争论,你们一天天的,哎哎哎,我不是针对你一个,我是说在座的各位都是人才! 上图红色的这3个箭头,对于通过new产生一个字符串(”宜春”)时,会先去常量池中查找是否已经有了”宜春”对象,如果没有则在常量池中创建一个此字符串对象,然后堆中再创建一个常量池中此”宜春”对象的拷贝对象。 也就是说准确答案是产生了一个或两个对象,如果常量池中原来没有 ”宜春” ,就是两个。...

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

Linux面试题(2020最新版)

文章目录Linux 概述什么是LinuxUnix和Linux有什么区别?什么是 Linux 内核?Linux的基本组件是什么?Linux 的体系结构BASH和DOS之间的基本区别是什么?Linux 开机启动过程?Linux系统缺省的运行级别?Linux 使用的进程间通信方式?Linux 有哪些系统日志文件?Linux系统安装多个桌面环境有帮助吗?什么是交换空间?什么是root帐户什么是LILO?什...

Linux命令学习神器!命令看不懂直接给你解释!

大家都知道,Linux 系统有非常多的命令,而且每个命令又有非常多的用法,想要全部记住所有命令的所有用法,恐怕是一件不可能完成的任务。 一般情况下,我们学习一个命令时,要么直接百度去搜索它的用法,要么就直接用 man 命令去查看守冗长的帮助手册。这两个都可以实现我们的目标,但有没有更简便的方式呢? 答案是必须有的!今天给大家推荐一款有趣而实用学习神器 — kmdr,让你解锁 Linux 学习新姿势...

和黑客斗争的 6 天!

互联网公司工作,很难避免不和黑客们打交道,我呆过的两家互联网公司,几乎每月每天每分钟都有黑客在公司网站上扫描。有的是寻找 Sql 注入的缺口,有的是寻找线上服务器可能存在的漏洞,大部分都...

史上最全的 python 基础知识汇总篇,没有比这再全面的了,建议收藏

网友们有福了,小编终于把基础篇的内容全部涉略了一遍,这是一篇关于基础知识的汇总的文章,请朋友们收下,不用客气,不过文章篇幅肯能会有点长,耐心阅读吧爬虫(七十)多进程multiproces...

讲一个程序员如何副业月赚三万的真实故事

loonggg读完需要3分钟速读仅需 1 分钟大家好,我是你们的校长。我之前讲过,这年头,只要肯动脑,肯行动,程序员凭借自己的技术,赚钱的方式还是有很多种的。仅仅靠在公司出卖自己的劳动时...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

85后蒋凡:28岁实现财务自由、34岁成为阿里万亿电商帝国双掌门,他的人生底层逻辑是什么?...

蒋凡是何许人也? 2017年12月27日,在入职4年时间里,蒋凡开挂般坐上了淘宝总裁位置。 为此,时任阿里CEO张勇在任命书中力赞: 蒋凡加入阿里,始终保持创业者的冲劲,有敏锐的...

总结了 150 余个神奇网站,你不来瞅瞅吗?

原博客再更新,可能就没了,之后将持续更新本篇博客。

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

新一代神器STM32CubeMonitor介绍、下载、安装和使用教程

关注、星标公众号,不错过精彩内容作者:黄工公众号:strongerHuang最近ST官网悄悄新上线了一款比较强大的工具:STM32CubeMonitor V1.0.0。经过我研究和使用之...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

大学一路走来,学习互联网全靠这几个网站,最终拿下了一把offer

大佬原来都是这样炼成的

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

什么时候跳槽,为什么离职,你想好了么?

都是出来打工的,多为自己着想

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

你期望月薪4万,出门右拐,不送,这几个点,你也就是个初级的水平

先来看几个问题通过注解的方式注入依赖对象,介绍一下你知道的几种方式@Autowired和@Resource有何区别说一下@Autowired查找候选者的...

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

大三实习生,字节跳动面经分享,已拿Offer

说实话,自己的算法,我一个不会,太难了吧

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

《经典算法案例》01-08:如何使用质数设计扫雷(Minesweeper)游戏

我们都玩过Windows操作系统中的经典游戏扫雷(Minesweeper),如果把质数当作一颗雷,那么,表格中红色的数字哪些是雷(质数)?您能找出多少个呢?文中用列表的方式罗列了10000以内的自然数、质数(素数),6的倍数等,方便大家观察质数的分布规律及特性,以便对算法求解有指导意义。另外,判断质数是初学算法,理解算法重要性的一个非常好的案例。

程序员必知的 89 个操作系统核心概念

操作系统(Operating System,OS):是管理计算机硬件与软件资源的系统软件,同时也是计算机系统的内核与基石。操作系统需要处理管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本事务。操作系统也提供一个让用户与系统交互的操作界面。 shell:它是一个程序,可从键盘获取命令并将其提供给操作系统以执行。 在过去,它是类似 Unix 的系统上...

大牛都会用的IDEA调试技巧!!!

导读 前天面试了一个985高校的实习生,问了他平时用什么开发工具,他想也没想的说IDEA,于是我抛砖引玉的问了一下IDEA的调试用过吧,你说说怎么设置断点...

面试官:你连SSO都不懂,就别来面试了

大厂竟然要考我SSO,卧槽。

阿里面试,问了B+树,这个回答让我通过了

上周我通过阿里一面,岗位是客户端开发工程师。面试过程中面试官问了B+树,回答时面试官一直点头(应该回答得还不错,过了),今天详细讲一讲B+树。

看完这篇 Session、Cookie、Token,和面试官扯皮就没问题了

Cookie 和 Session HTTP 协议是一种无状态协议,即每次服务端接收到客户端的请求时,都是一个全新的请求,服务器并不知道客户端的历史请求记录;Session 和 Cookie 的主要目的就是为了弥补 HTTP 的无状态特性。 Session 是什么 客户端请求服务端,服务端会为这次请求开辟一块内存空间,这个对象便是 Session 对象,存储结构为 ConcurrentHashMa...

终于,月薪过5万了!

来看几个问题想不想月薪超过5万?想不想进入公司架构组?想不想成为项目组的负责人?想不想成为spring的高手,超越99%的对手?那么本文内容是你必须要掌握的。本文主要详解bean的生命...

立即提问
相关内容推荐