使用paddle框架时
部署深度学习神经网络在服务器多块GPU上运行的时候
运行如下代码,运行train_loader = fluid.contrib.reader.distributed_batch_reader(train_loader)
时报错:
AttributeError: module 'paddle.fluid.contrib' has no attribute 'reader'
在paddle官方网站找不到相关的文档 以及该函数的用法
在哪里获知该函数的用法 或者是如何解决该问题
问题相关代码
def train_multi_gpu():
##修改1-从环境变量获取使用GPU的序号
place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id)
with fluid.dygraph.guard(place):
##修改2-对原模型做并行化预处理
strategy = fluid.dygraph.parallel.prepare_context()
model = MNIST("mnist")
model = fluid.dygraph.parallel.DataParallel(model, strategy)
model.train()
#调用加载数据的函数
train_loader = load_data('train')
##修改3-多GPU数据读取,必须确保每个进程读取的数据是不同的
train_loader = fluid.contrib.reader.distributed_batch_reader(train_loader)
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01)
EPOCH_NUM = 5
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据
image_data, label_data = data
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
predict = model(image)
loss = fluid.layers.square_error_cost(predict, label)
avg_loss = fluid.layers.mean(loss)
# 修改4-多GPU训练需要对Loss做出调整,并聚合不同设备上的参数梯度
avg_loss = mnist.scale_loss(avg_loss)
avg_loss.backward()
model.apply_collective_grads()
# 最小化损失函数,清除本次训练的梯度
optimizer.minimize(avg_loss)
model.clear_gradients()
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#保存模型参数
fluid.save_dygraph(model.state_dict(), 'mnist')
```
运行结果及报错内容
AttributeError: module 'paddle.fluid.contrib' has no attribute 'reader'