import torch
from torch import nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from torch.nn import MaxPool2d, Conv2d, Dropout, ReLU
from torch.utils.data import DataLoader, Dataset
#准备数据集
df=pd.read_csv("train.csv",parse_dates=["Date"],index_col=[0])
print(df.shape)
train_data_size=round(len(df)*0.8)
test_data_size=round(len(df)*0.2)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# df[['Open']].plot()
# plt.ylabel("stock price")
# plt.xlabel("times")
# plt.show()
sel_col = ['Open', 'High', 'Low', 'Close']
df=df[sel_col]
df_close_max=df['Close'].max()
df_close_min=df['Close'].min()
print("最高价=", df_close_max)
print("最低价=", df_close_min)
print("波动值=", df_close_max-df_close_min)
print("上涨率=", (df_close_max-df_close_min)/df_close_min)
print("下跌率=", (df_close_max-df_close_min)/df_close_max)
df=df.apply(lambda x:(x-min(x))/(max(x)-min(x)))
print(df)
total_len=df.shape[0]
print("df.shape=",df.shape)
print("df_len=", total_len)
sequence=10
x=[]
y=[]
for i in range(total_len-sequence):
x.append(np.array(df.iloc[i:(i+sequence),].values,dtype=np.float32))
y.append(np.array(df.iloc[(i+sequence),1],dtype=np.float32))
print("train data of item 0: \n", x[0])
print("train label of item 0: \n", y[0])
print("\n序列化后的数据形状:")
X = np.array(x)
Y = np.array(y)
Y = np.expand_dims(Y, 1)
print("X.shape =",X.shape)
print("Y.shape =",Y.shape)
train_x = X[:int(0.7 * total_len)]
train_y = Y[:int(0.7 * total_len)]
# 数据集前70%后的数据(30%)作为验证集
valid_x = X[int(0.7 * total_len):]
valid_y = Y[int(0.7 * total_len):]
print("训练集x的形状是:",train_x.shape)
print("测试集y的形状是:",train_y.shape)
print("测试集x的形状是:",valid_x.shape)
print("测试集y的形状是:",valid_y.shape)
class Mydataset(Dataset):
def __init__(self, x, y, transform=None):
self.x = x
self.y = y
def __getitem__(self, index):
x1 = self.x[index]
y1 = self.y[index]
return x1, y1
def __len__(self):
return len(self.x)
dataset_train = Mydataset(train_x, train_y)
dataset_valid = Mydataset(valid_x, valid_y)
train_dataloader=DataLoader(dataset_train,batch_size=64)
valid_dataloader=DataLoader(dataset_valid,batch_size=64)
# print(train_dataloader)
# print(valid_dataloader)
class cnn_lstm(nn.Module):
def __init__(self,window_size,feature_number):
super(cnn_lstm, self).__init__()
self.window_size=window_size
self.feature_number=feature_number
self.conv1 = Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=2)
self.relu1 = ReLU()
self.maxpooling1 = MaxPool2d(2, stride=1, padding="same")
self.dropout1 = Dropout(0.3)
self.lstm1 = nn.LSTM(input_size=64 * feature_number, hidden_size=128, num_layers=1, batch_first=True)
self.lstm2 = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, batch_first=True)
self.fc = nn.Linear(in_features=64, out_features=32)
self.relu2 = nn.ReLU()
self.head = nn.Linear(in_features=32, out_features=1)
def forward(self, x):
# x = x.reshape([x.shape[0], 1, self.window_size, self.feature_number])
x = x.transpose(-1, -2)
x = self.conv1(x)
x = self.relu1(x)
x = self.pool(x)
x = self.dropout(x)
# x = x.reshape([x.shape[0], self.window_size, -1])
x = x.transpose(-1, -2) #
x, (h, c) = self.lstm1(x)
x, (h, c) = self.lstm2(x)
x = x[:, -1, :] # 最后一个LSTM只要窗口中最后一个特征的输出
x = self.fc(x)
x = self.relu2(x)
x = self.head(x)
return x
#创建网络模型
cnn_lstm=cnn_lstm(window_size=10,feature_number=4)
#定义损失函数
loss_fn=nn.MSELoss(size_average=True)
#定义优化器
learning_rate=0.01
opitmizer=torch.optim.Adam(cnn_lstm.parameters(),learning_rate)
#设置训练网络参数
total_train_step=0
total_valid_step=0
#训练论数
epoch=10
for i in range(epoch):
print("______第{}轮训练开始________".format((i + 1)))
y_train_pred=cnn_lstm(train_x)
loss=loss_fn(train_x,train_y)
#优化器优化模型
opitmizer.zero_gard()
loss.backward()
opitmizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
请问在这个数据集划分的部分,在哪里可以添加 将数据类型转化为totensor的格式