就是我行对train文件训练后,直接训练test.xls。请问这个应该怎么办呢,越简单越好。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#from competition.ml import score
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
%config IPCompleter.greedy = True
%config IPCompleter.use_jedi = True
pd.options.display.max_colwidth = 100
plt.rcParams['figure.figsize'] = (12, 8)
train_path = r'C:\Users\MyPC\Desktop\train.xls'
test_path = r'C:\Users\MyPC\Desktop\test.xls'
train = pd.read_excel(train_path)
test = pd.read_excel(test_path)
train.shape, test.shape
train.info()
test.info()
train.head()
test.head()
train.describe()
test.describe()
from sklearn.ensemble import ExtraTreesClassifier
model=ExtraTreesClassifier()
trainX=train[['X1','X2','X3','X4','X5','X6','X7','X8','X9','X10','X11','X12','X13','X14','X15','X16','X17','X18','X19','X20','X21','X22','X23']]
trainY=train['Y']
testX=train[['X1','X2','X3','X4','X5','X6','X7','X8','X9','X10','X11','X12','X13','X14','X15','X16','X17','X18','X19','X20','X21','X22','X23']]
testY=train['Y']
model.fit(trainX,trainY)
y_pred =model.predict(testX)#######预测
np.savetxt(r'C:\Users\MyPC\Desktop\predict.csv', y_pred)
#score(y_pred)
就是我行对train文件训练后,直接训练test.xls。请问这个应该怎么办呢,越简单越好。

简单的机器学习更改,指定数据集预测
- 写回答
- 好问题 0 提建议
- 关注问题
- 邀请回答
-
1条回答 默认 最新
- 二心TOT 2019-11-08 09:28关注
首先,不建议这么做,如果把train和test都用来训练,没测试集来看效果。
如果真要这么做,可以在训练前先把两个文件合并再投入训练本回答被题主选为最佳回答 , 对您是否有帮助呢?解决 无用评论 打赏 举报