时间管理菌 2022-08-10 19:07 采纳率: 100%
浏览 79
已结题

关于#深度学习#的问题,如何解决?

问题遇到的现象和发生背景

深度学习,模型训练遇到的问题

"""
卷积神经网络对MUIST数据集分类
"""

import torch
from torch import nn
import numpy as np
import torch.optim as optim
from matplotlib import pyplot
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset,DataLoader

def read_image(file_path):
    """读取MNIST图片

    Args:
        file_path (str): 图片文件位置

    Returns:
        list: 图片列表
    """
    with open(file_path,'rb') as f:
        file = f.read()
        img_num = int.from_bytes(file[4:8],byteorder='big') #图片数量
        img_h = int.from_bytes(file[8:12],byteorder='big') #图片h
        img_w = int.from_bytes(file[12:16],byteorder='big') #图片w
        img_data = []
        file = file[16:]
        data_len = img_h*img_w

        for i in range(img_num):
            data = [item/255 for item in file[i*data_len:(i+1)*data_len]]
            img_data.append(np.array(data).reshape(img_h,img_w))

        return img_data

def read_label(file_path):
    with open(file_path,'rb') as f:
        file = f.read()
        label_num = int.from_bytes(file[4:8],byteorder='big') #label的数量
        file = file[8:]
        label_data = []
        for i in range(label_num):
            label_data.append(file[i])
        return label_data


train = read_image("data/mnist/train-images-idx3-ubyte/train-images.idx3-ubyte")
label = read_label("data/mnist/train-labels-idx1-ubyte/train-labels.idx1-ubyte")
# pyplot.imshow(train[0].reshape((28,28)),cmap="gray")
# pyplot.show()
print(train[1].shape)

#定义超参数
input_size = 28 #图像总尺寸28*28
num_classes = 10 #标签的种类
num_epochs = 3 #训练的总循环周期
batch_size = 64 #一个批次的大小,64张图片

#划分数据集
train_img,valid_img,train_label,valid_label = train_test_split(train,label,test_size=0.2,shuffle=True)
# train_img,valid_img,train_label,valid_label = map(torch.tensor,(train_img,valid_img,train_label,valid_label))
# print(type(train_img),type(train_label))

train_img = np.array(train_img)
train_label = np.array(train_label)
valid_img = np.array(valid_img)
valid_label = np.array(valid_label)

train_img = torch.from_numpy(train_img)
train_label = torch.from_numpy(train_label)
valid_img = torch.from_numpy(valid_img)
valid_label = torch.from_numpy(valid_label)

#构建batch数据
train_ds = TensorDataset(train_img,train_label)
train_loader = DataLoader(dataset=train_ds,batch_size=batch_size,shuffle=True)
test_dl = TensorDataset(valid_img,valid_label)
test_loader = DataLoader(dataset=test_dl,batch_size=batch_size,shuffle=True)



class MyNet_CNN(nn.Module):
    def __init__(self):
        super(MyNet_CNN, self).__init__()
        self.conv_1 = nn.Sequential( #输入 (1,28,28)
            nn.Conv2d(
                1, #输入的特征图数(原始图为灰度图一层)
                16,  #得到16个特征图
                kernel_size=5, #卷积核的大小
                stride=1, #步长
                padding=2 #图片填充层数
            ), #输出(16,28,28)
            nn.ReLU(), #relu层(激活函数)
            nn.MaxPool2d(kernel_size=2), #进行池化操作(2*2区域),输出结果为 (16,24,24)
        )
        self.conv_2 = nn.Sequential( #进入下一个层 输入(16,24,24)
            nn.Conv2d(16, 32, kernel_size=5, stride=1,padding=2), #输出(32,14,14)
            nn.ReLU(),
            nn.MaxPool2d(2),#输出(32,7,7)
        )
        self.out = nn.Linear(32*7*7,10) #全连接层的得到的结果

    """前向传播"""
    def forward(self, x):
        x = self.conv_1(x)
        x = self.conv_2(x)
        x = x.view(x.size(0), -1) #将结果转化为向量
        output = self.out(x)
        return output

"""准确率作为评估标准"""
def accuracy(predictions,labels):
    pred = torch.max(predictions.data,1)[1]
    rights = pred.eq(labels.data.view_as(pred)).sum()
    return rights,len(labels)

"""训练网络模型"""
#实例化
net = MyNet_CNN()
#s损失函数
criterion = nn.CrossEntropyLoss()
#优化器
optimizer = optim.Adam(net.parameters(),lr=0.001)

#开始训练循环
for epoch in range(num_epochs):
    #当前的epoch结果(准确率)保存下来
    train_rights = []

    for batch_idx,(data,target) in enumerate(test_loader):  #针对容器的每一个批次进行循环
        net.train()
        output =net(data)
        loss =criterion(output,target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        right = accuracy(output,target)
        train_rights.append(right)

        if batch_idx % 100 == 0:
            net.eval()
            val_rights = []

            for (bata,target) in test_loader:
                output = net(data)
                right =accuracy(output,target)

            #准确率计算
            train_r = (sum(tup[0] for tup in train_rights),sum(tup[1] for tup in train_rights))
            val_r = (sum(tup[0] for tup in val_rights),sum(tup[1] for tup in val_rights))

            print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
                epoch,batch_idx*batch_size,len(train_loader.dataset),
                100. * batch_idx / len(train_loader),
                loss.data,
                100. * train_r[0].numpy() / train_r[1],
                100. * val_r[0].numpy() / val_r[1]
            ))

运行结果及报错内容
RuntimeError                              Traceback (most recent call last)
Input In [1], in <cell line: 128>()
    132 for batch_idx,(data,target) in enumerate(test_loader):  #针对容器的每一个批次进行循环
    133     net.train()
--> 134     output =net(data)
    135     loss =criterion(output,target)
    136     optimizer.zero_grad()

File D:\anaconda3\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs)
   1126 # If we don't have any hooks, we want to skip the rest of the logic in
   1127 # this function, and just call forward.
   1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1129         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130     return forward_call(*input, **kwargs)
   1131 # Do not call functions when jit is used
   1132 full_backward_hooks, non_full_backward_hooks = [], []

Input In [1], in MyNet_CNN.forward(self, x)
    106 def forward(self, x):
--> 107     x = self.conv_1(x)
    108     x = self.conv_2(x)
    109     x = x.view(x.size(0), -1) #将结果转化为向量


```c
File D:\anaconda3\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs)
   1126 # If we don't have any hooks, we want to skip the rest of the logic in
   1127 # this function, and just call forward.
   1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1129         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130     return forward_call(*input, **kwargs)
   1131 # Do not call functions when jit is used
   1132 full_backward_hooks, non_full_backward_hooks = [], []

File D:\anaconda3\lib\site-packages\torch\nn\modules\container.py:139, in Sequential.forward(self, input)
    137 def forward(self, input):
    138     for module in self:
--> 139         input = module(input)
    140     return input

File D:\anaconda3\lib\site-packages\torch\nn\modules\module.py:1130, in Module._call_impl(self, *input, **kwargs)
   1126 # If we don't have any hooks, we want to skip the rest of the logic in
   1127 # this function, and just call forward.
   1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1129         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130     return forward_call(*input, **kwargs)
   1131 # Do not call functions when jit is used
   1132 full_backward_hooks, non_full_backward_hooks = [], []

File D:\anaconda3\lib\site-packages\torch\nn\modules\conv.py:457, in Conv2d.forward(self, input)
    456 def forward(self, input: Tensor) -> Tensor:
--> 457     return self._conv_forward(input, self.weight, self.bias)

File D:\anaconda3\lib\site-packages\torch\nn\modules\conv.py:453, in Conv2d._conv_forward(self, input, weight, bias)
    449 if self.padding_mode != 'zeros':
    450     return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
    451                     weight, bias, self.stride,
    452                     _pair(0), self.dilation, self.groups)
--> 453 return F.conv2d(input, weight, bias, self.stride,
    454                 self.padding, self.dilation, self.groups)

RuntimeError: Given groups=1, weight of size [16, 1, 5, 5], expected input[1, 64, 28, 28] to have 1 channels, but got 64 channels instead


###### 我的解答思路和尝试过的方法 
毫无思路,不知道错哪
```typescript


  • 写回答

2条回答 默认 最新

  • SmallAntJ 2022-08-11 03:37
    关注

    这里的错误提示是说第107行self.conv_1(x)的输入x的维度不对,输入x需要是1 channels而不是64 channels。x的维度应该是[64, 1, 28, 28]而不是[64, 28, 28],这里64是batch_size,28是图片大小,还需要一个channel的数目(和nn.Conv2d第一个参数对应)。你写的数据预处理的部分需要改一下。或者最简单的办法是在107行前面加一句对x的预处理:

        def forward(self, x):
            x = torch.unsqueeze(x,1).type(torch.FloatTensor) #增加一个channel的维度同时把tensor的数据类型改为float
            #print(x.size(), x.type())
            x = self.conv_1(x)
            x = self.conv_2(x)
            x = x.view(x.size(0), -1) #将结果转化为向量
            output = self.out(x)
            return output
    
    本回答被题主选为最佳回答 , 对您是否有帮助呢?
    评论
查看更多回答(1条)

报告相同问题?

问题事件

  • 系统已结题 8月20日
  • 已采纳回答 8月12日
  • 创建了问题 8月10日

悬赏问题

  • ¥60 如何批量获取json的url
  • ¥15 对法兰连接元件所承受的表面载荷等效转化为法兰开孔接触面上的等效表面载荷?
  • ¥15 comsol仿真压阻传感器
  • ¥15 Python线性规划函数optimize.linprog求解为整数
  • ¥15 llama3中文版微调
  • ¥15 pg数据库导入数据序列重复
  • ¥15 三分类机器学习模型可视化分析
  • ¥15 本地测试网站127.0.0.1 已拒绝连接,如何解决?(标签-ubuntu)
  • ¥50 Qt在release捕获异常并跟踪堆栈(有Demo,跑一下环境再回答)
  • ¥30 python,LLM 文本提炼