RACH_preamble
2019-09-05 11:16
采纳率: 83.3%
浏览 361

机器学习中数据标准差极小的预处理策略

##机器学习中数据标准差极小的预处理策略
现有数据大致上服从正态分布,但是标准差极小,如果简单地归一化到[-1,1]处理,得到的数据90%会集中在[-0.3,0.3]中间,数据变得没有什么区分度,请问这种类型的数据应该用什么预处理的策略比较好?

  • 写回答
  • 好问题 提建议
  • 追加酬金
  • 关注问题
  • 邀请回答

1条回答 默认 最新

  • 繁华三千东流水 2019-09-07 09:37
    最佳回答

    在吴恩达的机器学习教学中说过,归一化后-0.3到0.3的数据是极好的。肉眼看是没什么区分度,但是当你的数据特征维度稍大一些,比如十维,二十维,三十维,那么在对应的维度空间里,样本和样本之间的距离还是很大的。

    评论
    解决 无用
    打赏 举报

相关推荐 更多相似问题