卷积神经网络的每个特征图理论上受到上层全部特征图的影响,因为filter中每个Kernel的层数(Kernel深度)和上层特征图数量是一致的,为什么图片中第二层卷积层的特征图只连接到了上层中的一部分?有得是全部6个,有得是4个,有的是3个?难道每个Kernel的层数可变?
比如图中第二层卷积的特征图8,它只连接到了上层特征图图1234,没有连接到图56,那这个特征图8是由一个几层Kernel算出来的呢?
图片来源:CNN 3D可视化
卷积神经网络的每个特征图理论上受到上层全部特征图的影响,因为filter中每个Kernel的层数(Kernel深度)和上层特征图数量是一致的,为什么图片中第二层卷积层的特征图只连接到了上层中的一部分?有得是全部6个,有得是4个,有的是3个?难道每个Kernel的层数可变?
比如图中第二层卷积的特征图8,它只连接到了上层特征图图1234,没有连接到图56,那这个特征图8是由一个几层Kernel算出来的呢?
图片来源:CNN 3D可视化