如何用keras对两组数据用相同的网络进行训练并且画在一个acc-loss图?

假如我有A,B两组数据,我想用两个的loss-acc图来对比得出哪组数据更好,所以如何将这两组数据同时进行训练并将结果画在一个acc-loss图?

1个回答

两组数据的训练的权重是否共享,如果是,用一个model,如果不是的话,可以用两个model,或者在model运行前,初始化下。

运行完得到 history 数据就是训练的acc,然后你得到两个 history以后用 pandas的zip合并,然后matplotlib.pyplot画图

Csdn user default icon
上传中...
上传图片
插入图片
抄袭、复制答案,以达到刷声望分或其他目的的行为,在CSDN问答是严格禁止的,一经发现立刻封号。是时候展现真正的技术了!
其他相关推荐
用keras制作数据集的问题

有没有大神用keras做过边缘检测的模型?比如用BSDS500数据集,要怎么训练? 数据集要怎么用?官方文档查不到类似的问题。。我知道x_train要用照片,那y_train是ground truth,但是完全不会用啊 推荐标签:keras, 边缘检测

用keras搭建BP神经网络对数据集进行回归预测,效果和同学的相比很差,麻烦大神指点。新手小白。。。

数据集是csv文件,一共十三列,十几万行,第十三列是要预测的值。 试过很多种方法(都是百度的),包括更改网络层数、 节点数,学习率……,效果都没什么提升 不知道问题出在哪里,请大神指点。 import numpy as np import keras as ks from keras.models import Sequential from sklearn import preprocessing from sklearn.model_selection import train_test_split from keras.layers import Dense, Activation,Dropout x_yuan = np.loadtxt(open("shaixuandata.csv","rb"),\ usecols=(range(12)),delimiter=",",skiprows=1) x = preprocessing.scale(x_yuan) y = np.loadtxt(open("shaixuandata.csv","rb"),\ usecols=(12),delimiter=",",skiprows=1) x_train, x_test, y_train, y_test = train_test_split(\ x, y, test_size=0.25, random_state=43) model = Sequential() model.add(Dense(units=30, input_dim=12)) model.add(Activation('relu')) model.add(Dropout(0.1)) model.add(Dense(units=1)) model.add(Activation('linear')) ks.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, \ patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) sgd = ks.optimizers.SGD(lr=0.001, clipnorm=1.,decay=1e-6, momentum=0.9) model.compile(optimizer='sgd', loss='mae', metrics=['mae']) model.fit(x_train, y_train, batch_size=30, epochs=3, callbacks=None, \ validation_data=(x_test,y_test), shuffle=True, class_weight=None, \ sample_weight=None, initial_epoch=0) predict = model.predict(x_test) sum = 0 for i in range(len(y_test)): sum = sum+(y_test[i]-predict[i])**2 mse = sum/len(y_test) print(mse) ![训练的结果是这样的,老实说训练结果太差](https://img-ask.csdn.net/upload/201806/27/1530098555_142017.png)

sklearn和keras中的数据集分割问题

用sklearn的train_test_split分割了数据集后还有没有必要在keras里的model.fit()里面用validation_split分割

keras框架的数据输入维度问题

x = np.arange(20) 创建一个一维数组shape是(20,),在keras里,如果直接输入神经网络的话,那么输入神经元是20吧? 但是如果x= x.reshape((1, 20))或者x=x.reshape((20,1))就是把原有的一维数组看成一个输入,reshape后的值输入神经网络就是一个神经元吧?上述二者的reshape是不是输入是等价的?

利用keras搭建神经网络,怎样记录每一轮epoch的时间,和训练的总时间?

神经网络就是一个简单的lstm神经网络,调用了keras模块,现在想比较不同训练方法的效率,如何在训练完成后显示每一步训练以及最后训练完的总时间?

怎样用keras实现从预训练模型中提取多层特征?

![图片说明](https://img-ask.csdn.net/upload/201906/19/1560958477_965287.jpg) 我想从一个预训练的卷积神经网络的不同层中提取特征,然后把这些不同层的特征拼接在一起,实现如上图一样的网络结构,我写的代码如下 ``` base_model = VGGFace(model='resnet50', include_top=False) model1 = base_model model2 = base_model input1 = Input(shape=(197,197,3)) model1_out = model1.layers[-12].output model1_in = model1.layers[0].output model1 = Model(model1_in,model1_out) x1 = model1(input1) x1 = GlobalMaxPool2D()(x1) x2 = model2(input1) x2 = GlobalMaxPool2D()(x2) out = Concatenate(axis=-1)([x1,x2]) out = Dense(1,activation='sigmoid')(out) model3 = Model([input1,input2],out) from keras.utils import plot_model plot_model(model3,"model3.png") import matplotlib.pyplot as plt img = plt.imread('model3.png') plt.imshow(img) ``` 但模型可视化显示如下,两个网络的权值并不共享。![图片说明](https://img-ask.csdn.net/upload/201906/19/1560959263_500375.png)

关于keras 对模型进行训练 train_on_batch参数和模型输出的关系

在用keras+gym测试policy gradient进行小车杆平衡时模型搭建如下: ``` inputs = Input(shape=(4,),name='ob_inputs') x = Dense(16,activation='relu')(inputs) x = Dense(16,activation='relu')(x) x = Dense(1,activation='sigmoid')(x) model = Model(inputs=inputs,outputs = x) ``` 这里输出层是一个神经元,输出一个[0,1]之间的数,表示小车动作的概率 但是在代码训练过程中,模型的训练代码为: ``` X = np.array(states) y = np.array(list(zip(actions,discount_rewards))) loss = self.model.train_on_batch(X,y) ``` 这里的target data(y)是一个2维的列表数组,第一列是对应执行的动作,第二列是折扣奖励,那么在训练的时候,神经网络的输出数据和target data的维度不一致,是如何计算loss的呢?会自动去拟合y的第一列数据吗?

keras构建的前向神经网络过拟合问题

我用keras构建了一个[7,200,200,200,200,1]的前向神经网络做回归,7个输入变量,1个输出变量。9000组训练样本,1072组测试样本。训练样本拟合相关系数达到0.98-0.99,测试样本相关系数为0.3-0.4,。后来,我加上dropout,l2正则化,训练样本相关系数降到0.5左右了,测试样本R才升到0.5 这究竟怎么回事?实在没办法了,求帮助啊

使用keras搭的模型,训练时候,使用相同的loss和metrics,但是输出却不一样

keras搭的模型,训练时候,使用相同的loss和metrics,但是输出却不一样,为什么会出现这种情况呀

使用keras画出模型准确率评估的执行结果时出现:

建立好深度学习的模型后,使用反向传播法进行训练。 定义了训练方式: ``` model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy']) ``` 执行训练: ``` train_history =model.fit(x=x_Train_normalize, y=y_Train_OneHot,validation_split=0.2, epochs=10,batch_size=200,verbose=2) ``` 执行后出现: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571243584_952792.png) 建立show_train_history显示训练过程: ``` import matplotlib.pyplot as plt def show_train_history(train_history,train,validation): plt.plot(train_history.history[train]) plt.plot(train_history.history[validation]) plt.title('Train History') plt.ylabel(train) plt.xlabel('Epoch') plt.legend(['train','validation'],loc='upper left') plt.show() ``` 画出准确率执行结果: ``` show_train_history(train_history,'acc','val_acc') ``` 结果出现以下问题: ![图片说明](https://img-ask.csdn.net/upload/201910/17/1571243832_179270.png) 这是怎么回事呀? 求求大佬救救孩子555

keras如何为已经训练好的模型添加层?

已经训练好的model,比如想在后面再添加lstm或者全连接层应该怎么做呢?

TensorFlow的Keras如何使用Dataset作为数据输入?

当我把dataset作为输入数据是总会报出如下错误,尽管我已经在数据解析那里reshape了图片大小为(512,512,1),请问该如何修改? ``` ValueError: Error when checking input: expected conv2d_input to have 4 dimensions, but got array with shape (None, 1) ``` **图片大小定义** ``` import tensorflow as tf from tensorflow import keras IMG_HEIGHT = 512 IMG_WIDTH = 512 IMG_CHANNELS = 1 IMG_PIXELS = IMG_CHANNELS * IMG_HEIGHT * IMG_WIDTH ``` **解析函数** ``` def parser(record): features = tf.parse_single_example(record, features={ 'image_raw': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([23], tf.int64) }) image = tf.decode_raw(features['image_raw'], tf.uint8) label = tf.cast(features['label'], tf.int32) image.set_shape([IMG_PIXELS]) image = tf.reshape(image, [IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS]) image = tf.cast(image, tf.float32) return image, label ``` **模型构建** ``` dataset = tf.data.TFRecordDataset([TFRECORD_PATH]) dataset.map(parser) dataset = dataset.repeat(10*10).batch(10) model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(5, 5), padding='same', activation='relu', input_shape=(512, 512, 1)), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'), keras.layers.MaxPool2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Flatten(), keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.25), keras.layers.Dense(23, activation='softmax') ]) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.sparse_categorical_crossentropy, metrics=[tf.keras.metrics.categorical_accuracy]) model.fit(dataset.make_one_shot_iterator(), epochs=10, steps_per_epoch=10) ```

如何调用GPU跑程序(keras框架)

我在学习神经网络 在做的时候我想让GPU来进行训练网络 所以如何调用GPU跑程序(keras框架)???

keras中如何对网络的某一层参数进行修改?

例如我使用model.get_layer('inp_layer').get_weights()[0] 获得了这一层的权重,我想手动修改这一层的参数值,如何通过一个赋值操作或者其他操作,把这一层的参数修改成我想要的值呢?

keras薛定谔的训练结果问题

刚刚开始学习keras,今天在测试非线性函数拟合的时候发现即便用了‘relu’激活函数还是没有办法很好的拟合结果,这已经困扰我很久了,而且更奇怪的是有一句看起来和结果毫无关系的语句居然会直接改变结果的分布 就是这一句: ``` print(y_pred) ``` 没有加的时候的结果: ![图片说明](https://img-ask.csdn.net/upload/202004/24/1587719740_46631.jpg) 加了之后的结果: ![图片说明](https://img-ask.csdn.net/upload/202004/24/1587719761_631438.jpg) 或者 ![图片说明](https://img-ask.csdn.net/upload/202004/24/1587719776_946600.jpg) 代码如下: ``` import keras import numpy as np import matplotlib.pyplot as plt #按顺序构成的模型 from keras.models import Sequential #全连接层 from keras.layers import Dense,Activation from keras.optimizers import SGD #使用numpy生成随机数据 x_data = np.linspace(-0.5,0.5,200) noise = np.random.normal(0,0.02,x_data.shape) y_data = np.square(x_data) + noise #显示随机点 plt.scatter(x_data,y_data) plt.show() # 构建一个顺序模型 model = Sequential() # 在模型中添加一个全连接层 model.add(Dense(units=10,input_dim=1,activation='relu')) # model.add(Activation("relu"))不行? #model.add(Activation("relu")) model.add(Dense(units=1,activation='relu')) # model.add(Activation("relu"))不行 #model.add(Activation("relu")) # 定义优化算法 sgd = SGD(lr=0.3) model.compile(optimizer=sgd,loss="mse") for step in range(3000): cost = model.train_on_batch(x_data,y_data) if step%500==0: print("cost: ",cost) W,b = model.layers[0].get_weights() print("W: ",W,"b: ",b) # x_data输入网络中,得到预测值 y_pred = model.predict(x_data) # 加不加这一句会对结果造成直接影响 print(y_pred) plt.scatter(x_data,y_pred) plt.plot(x_data,y_pred,"r-",lw=3) plt.show() ```

keras 训练 IMDB数据 为什么预测的是正面情感?

学习 利用Keras中的IMDB数据集,对评论进行二分类,有个疑问是:为什么预测的是正面情感?代码如下: from keras.datasets import imdb from keras import models from keras import layers import numpy as np import matplotlib.pyplot as plt def vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1. print('i=',i,'results[i]=',results[i]) return results (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) '''word_index = imdb.get_word_index() reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]]) ''' x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) y_train = np.asarray(train_labels).astype('float32') y_test = np.asarray(test_labels).astype('float32') model = models.Sequential() model.add(layers.Dense(16, activation='relu', input_shape=(10000,))) model.add(layers.Dense(16,activation='relu')) model.add(layers.Dense(1,activation='sigmoid')) x_val = x_train[:10000] partial_x_train = x_train[10000:] y_val = y_train[:10000] partial_y_train = y_train[10000:] model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512,validation_data=(x_val, y_val)) history_dict = history.history loss_value = history_dict['loss'] val_loss_value = history_dict['val_loss'] epochs = range(1,len(loss_value)+1) plt.plot(epochs, loss_value, 'bo', label='Trianing Loss') plt.plot(epochs, val_loss_value, 'b', label='Validation Loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show()

keras 训练网络时出现ValueError

rt 使用keras中的model.fit函数进行训练时出现错误:ValueError: None values not supported. 错误信息如下: ``` File "C:/Users/Desktop/MNISTpractice/mnist.py", line 93, in <module> model.fit(x_train,y_train, epochs=2, callbacks=callback_list,validation_data=(x_val,y_val)) File "C:\Anaconda3\lib\site-packages\keras\engine\training.py", line 1575, in fit self._make_train_function() File "C:\Anaconda3\lib\site-packages\keras\engine\training.py", line 960, in _make_train_function loss=self.total_loss) File "C:\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 87, in wrapper return func(*args, **kwargs) File "C:\Anaconda3\lib\site-packages\keras\optimizers.py", line 432, in get_updates m_t = (self.beta_1 * m) + (1. - self.beta_1) * g File "C:\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py", line 820, in binary_op_wrapper y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 639, in convert_to_tensor as_ref=False) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 704, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 113, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py", line 102, in constant tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "C:\Anaconda3\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 360, in make_tensor_proto raise ValueError("None values not supported.") ValueError: None values not supported. ```

训练dnn网络,添加全连接层,keras报错

![图片说明](https://img-ask.csdn.net/upload/201804/09/1523244974_485144.png) 更改了keras的版本号,依然报错

在中国程序员是青春饭吗?

今年,我也32了 ,为了不给大家误导,咨询了猎头、圈内好友,以及年过35岁的几位老程序员……舍了老脸去揭人家伤疤……希望能给大家以帮助,记得帮我点赞哦。 目录: 你以为的人生 一次又一次的伤害 猎头界的真相 如何应对互联网行业的「中年危机」 一、你以为的人生 刚入行时,拿着傲人的工资,想着好好干,以为我们的人生是这样的: 等真到了那一天,你会发现,你的人生很可能是这样的: ...

程序员请照顾好自己,周末病魔差点一套带走我。

程序员在一个周末的时间,得了重病,差点当场去世,还好及时挽救回来了。

C++(数据结构与算法)78:---分而治之

一、分而治之的思想 分而治之方法与软件设计的模块化方法非常相似 分而治之通常不用于解决问题的小实例,而要解决一个问题的大实例。一般步骤为: ①把一个大实例分为两个或多个更小的实例 ②分别解决每个小实例 ③把这些小实例的解组合成原始大实例的解 二、实际应用之找出假币 问题描述 一个袋子有16个硬币,其中只有一个是假币,这个假币比其他的真币重量轻(其他所有真币的重量都是相同的)...

springboot+jwt实现token登陆权限认证

一 前言 此篇文章的内容也是学习不久,终于到周末有时间码一篇文章分享知识追寻者的粉丝们,学完本篇文章,读者将对token类的登陆认证流程有个全面的了解,可以动态搭建自己的登陆认证过程;对小项目而已是个轻量级的认证机制,符合开发需求;更多精彩原创内容关注公主号知识追寻者,读者的肯定,就是对作者的创作的最大支持; 二 jwt实现登陆认证流程 用户使用账号和面发出post请求 服务器接受到请求后使用私...

技术大佬:我去,你写的 switch 语句也太老土了吧

昨天早上通过远程的方式 review 了两名新来同事的代码,大部分代码都写得很漂亮,严谨的同时注释也很到位,这令我非常满意。但当我看到他们当中有一个人写的 switch 语句时,还是忍不住破口大骂:“我擦,小王,你丫写的 switch 语句也太老土了吧!” 来看看小王写的代码吧,看完不要骂我装逼啊。 private static String createPlayer(PlayerTypes p...

win10暴力查看wifi密码

刚才邻居打了个电话说:喂小灰,你家wifi的密码是多少,我怎么连不上了。 我。。。 我也忘了哎,就找到了一个好办法,分享给大家: 第一种情况:已经连接上的wifi,怎么知道密码? 打开:控制面板\网络和 Internet\网络连接 然后右击wifi连接的无线网卡,选择状态 然后像下图一样: 第二种情况:前提是我不知道啊,但是我以前知道密码。 此时可以利用dos命令了 1、利用netsh wlan...

女程序员,为什么比男程序员少???

昨天看到一档综艺节目,讨论了两个话题:(1)中国学生的数学成绩,平均下来看,会比国外好?为什么?(2)男生的数学成绩,平均下来看,会比女生好?为什么?同时,我又联想到了一个技术圈经常讨...

副业收入是我做程序媛的3倍,工作外的B面人生是怎样的?

提到“程序员”,多数人脑海里首先想到的大约是:为人木讷、薪水超高、工作枯燥…… 然而,当离开工作岗位,撕去层层标签,脱下“程序员”这身外套,有的人生动又有趣,马上展现出了完全不同的A/B面人生! 不论是简单的爱好,还是正经的副业,他们都干得同样出色。偶尔,还能和程序员的特质结合,产生奇妙的“化学反应”。 @Charlotte:平日素颜示人,周末美妆博主 大家都以为程序媛也个个不修边幅,但我们也许...

MySQL数据库面试题(2020最新版)

文章目录数据库基础知识为什么要使用数据库什么是SQL?什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式?分别有什么区别?数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引与InnoDB索引的区别?InnoDB引擎的4大特性存储引擎选择索引什么是索引?索引有哪些优缺点?索引使用场景(重点)...

如果你是老板,你会不会踢了这样的员工?

有个好朋友ZS,是技术总监,昨天问我:“有一个老下属,跟了我很多年,做事勤勤恳恳,主动性也很好。但随着公司的发展,他的进步速度,跟不上团队的步伐了,有点...

我入职阿里后,才知道原来简历这么写

私下里,有不少读者问我:“二哥,如何才能写出一份专业的技术简历呢?我总感觉自己写的简历太烂了,所以投了无数份,都石沉大海了。”说实话,我自己好多年没有写过简历了,但我认识的一个同行,他在阿里,给我说了一些他当年写简历的方法论,我感觉太牛逼了,实在是忍不住,就分享了出来,希望能够帮助到你。 01、简历的本质 作为简历的撰写者,你必须要搞清楚一点,简历的本质是什么,它就是为了来销售你的价值主张的。往深...

程序员写出这样的代码,能不挨骂吗?

当你换槽填坑时,面对一个新的环境。能够快速熟练,上手实现业务需求是关键。但是,哪些因素会影响你快速上手呢?是原有代码写的不够好?还是注释写的不够好?昨夜...

带了6个月的徒弟当了面试官,而身为高级工程师的我天天修Bug......

即将毕业的应届毕业生一枚,现在只拿到了两家offer,但最近听到一些消息,其中一个offer,我这个组据说客户很少,很有可能整组被裁掉。 想问大家: 如果我刚入职这个组就被裁了怎么办呢? 大家都是什么时候知道自己要被裁了的? 面试软技能指导: BQ/Project/Resume 试听内容: 除了刷题,还有哪些技能是拿到offer不可或缺的要素 如何提升面试软实力:简历, 行为面试,沟通能...

优雅的替换if-else语句

场景 日常开发,if-else语句写的不少吧??当逻辑分支非常多的时候,if-else套了一层又一层,虽然业务功能倒是实现了,但是看起来是真的很不优雅,尤其是对于我这种有强迫症的程序"猿",看到这么多if-else,脑袋瓜子就嗡嗡的,总想着解锁新姿势:干掉过多的if-else!!!本文将介绍三板斧手段: 优先判断条件,条件不满足的,逻辑及时中断返回; 采用策略模式+工厂模式; 结合注解,锦...

!大部分程序员只会写3年代码

如果世界上都是这种不思进取的软件公司,那别说大部分程序员只会写 3 年代码,恐怕就没有程序员这种职业。

离职半年了,老东家又发 offer,回不回?

有小伙伴问松哥这个问题,他在上海某公司,在离职了几个月后,前公司的领导联系到他,希望他能够返聘回去,他很纠结要不要回去? 俗话说好马不吃回头草,但是这个小伙伴既然感到纠结了,我觉得至少说明了两个问题:1.曾经的公司还不错;2.现在的日子也不是很如意。否则应该就不会纠结了。 老实说,松哥之前也有过类似的经历,今天就来和小伙伴们聊聊回头草到底吃不吃。 首先一个基本观点,就是离职了也没必要和老东家弄的苦...

2020阿里全球数学大赛:3万名高手、4道题、2天2夜未交卷

阿里巴巴全球数学竞赛( Alibaba Global Mathematics Competition)由马云发起,由中国科学技术协会、阿里巴巴基金会、阿里巴巴达摩院共同举办。大赛不设报名门槛,全世界爱好数学的人都可参与,不论是否出身数学专业、是否投身数学研究。 2020年阿里巴巴达摩院邀请北京大学、剑桥大学、浙江大学等高校的顶尖数学教师组建了出题组。中科院院士、美国艺术与科学院院士、北京国际数学...

为什么你不想学习?只想玩?人是如何一步一步废掉的

不知道是不是只有我这样子,还是你们也有过类似的经历。 上学的时候总有很多光辉历史,学年名列前茅,或者单科目大佬,但是虽然慢慢地长大了,你开始懈怠了,开始废掉了。。。 什么?你说不知道具体的情况是怎么样的? 我来告诉你: 你常常潜意识里或者心理觉得,自己真正的生活或者奋斗还没有开始。总是幻想着自己还拥有大把时间,还有无限的可能,自己还能逆风翻盘,只不是自己还没开始罢了,自己以后肯定会变得特别厉害...

男生更看重女生的身材脸蛋,还是思想?

往往,我们看不进去大段大段的逻辑。深刻的哲理,往往短而精悍,一阵见血。问:产品经理挺漂亮的,有点心动,但不知道合不合得来。男生更看重女生的身材脸蛋,还是...

为什么程序员做外包会被瞧不起?

二哥,有个事想询问下您的意见,您觉得应届生值得去外包吗?公司虽然挺大的,中xx,但待遇感觉挺低,马上要报到,挺纠结的。

当HR压你价,说你只值7K,你该怎么回答?

当HR压你价,说你只值7K时,你可以流畅地回答,记住,是流畅,不能犹豫。 礼貌地说:“7K是吗?了解了。嗯~其实我对贵司的面试官印象很好。只不过,现在我的手头上已经有一份11K的offer。来面试,主要也是自己对贵司挺有兴趣的,所以过来看看……”(未完) 这段话主要是陪HR互诈的同时,从公司兴趣,公司职员印象上,都给予对方正面的肯定,既能提升HR的好感度,又能让谈判气氛融洽,为后面的发挥留足空间。...

面试:第十六章:Java中级开发

HashMap底层实现原理,红黑树,B+树,B树的结构原理 Spring的AOP和IOC是什么?它们常见的使用场景有哪些?Spring事务,事务的属性,传播行为,数据库隔离级别 Spring和SpringMVC,MyBatis以及SpringBoot的注解分别有哪些?SpringMVC的工作原理,SpringBoot框架的优点,MyBatis框架的优点 SpringCould组件有哪些,他们...

早上躺尸,晚上干活:硅谷科技公司这么流行迟到?

硅谷科技公司上班时间OPEN早已不是什么新鲜事,早九晚五是常态,但有很多企业由于不打卡,员工们10点、11点才“姗姗来迟”的情况也屡见不鲜。 这种灵活的考勤制度为人羡慕,甚至近年来,国内某些互联网企业也纷纷效仿。不过,硅谷普遍弹性的上班制度是怎么由来的呢?这种“流行性迟到”真的有那么轻松、悠哉吗? 《动态规划专题班》 课程试听内容: 动态规划的解题要领 动态规划三大类 求最值/计数/可行性 常...

面试阿里p7,被按在地上摩擦,鬼知道我经历了什么?

面试阿里p7被问到的问题(当时我只知道第一个):@Conditional是做什么的?@Conditional多个条件是什么逻辑关系?条件判断在什么时候执...

Python爬虫,高清美图我全都要(彼岸桌面壁纸)

爬取彼岸桌面网站较为简单,用到了requests、lxml、Beautiful Soup4

无代码时代来临,程序员如何保住饭碗?

编程语言层出不穷,从最初的机器语言到如今2500种以上的高级语言,程序员们大呼“学到头秃”。程序员一边面临编程语言不断推陈出新,一边面临由于许多代码已存在,程序员编写新应用程序时存在重复“搬砖”的现象。 无代码/低代码编程应运而生。无代码/低代码是一种创建应用的方法,它可以让开发者使用最少的编码知识来快速开发应用程序。开发者通过图形界面中,可视化建模来组装和配置应用程序。这样一来,开发者直...

面试了一个 31 岁程序员,让我有所触动,30岁以上的程序员该何去何从?

最近面试了一个31岁8年经验的程序猿,让我有点感慨,大龄程序猿该何去何从。

大三实习生,字节跳动面经分享,已拿Offer

说实话,自己的算法,我一个不会,太难了吧

程序员垃圾简历长什么样?

已经连续五年参加大厂校招、社招的技术面试工作,简历看的不下于万份 这篇文章会用实例告诉你,什么是差的程序员简历! 疫情快要结束了,各个公司也都开始春招了,作为即将红遍大江南北的新晋UP主,那当然要为小伙伴们做点事(手动狗头)。 就在公众号里公开征简历,义务帮大家看,并一一点评。《启舰:春招在即,义务帮大家看看简历吧》 一石激起千层浪,三天收到两百多封简历。 花光了两个星期的所有空闲时...

Java岗开发3年,公司临时抽查算法,离职后这几题我记一辈子

前几天我们公司做了一件蠢事,非常非常愚蠢的事情。我原以为从学校出来之后,除了找工作有测试外,不会有任何与考试有关的事儿。 但是,天有不测风云,公司技术总监、人事总监两位大佬突然降临到我们事业线,叫上我老大,给我们组织了一场别开生面的“考试”。 那是一个风和日丽的下午,我翘着二郎腿,左手端着一杯卡布奇诺,右手抓着我的罗技鼠标,滚动着轮轴,穿梭在头条热点之间。 “淡黄的长裙~蓬松的头发...

大牛都会用的IDEA调试技巧!!!

导读 前天面试了一个985高校的实习生,问了他平时用什么开发工具,他想也没想的说IDEA,于是我抛砖引玉的问了一下IDEA的调试用过吧,你说说怎么设置断点...

立即提问
相关内容推荐